
Technische Universität München

Professur für Hydromechanik

Implementation of an Immersed Boundary Method for
a fourth-order Finite Volume Scheme

Master thesis
2019

Khaled Boulbrachene

Submitted to the Faculty of Civil, Geo and Environmental Engineering in partial
fulfillment of the requirements for the degree of

Master of Science

at the Technical University of Munich.

Supervisor: Lukas Unglehrt, M.Sc. Professur für Hydromechanik

Prüfer der Arbeit: Univ.-Prof. Dr.-Ing. habil. Michael Manhart

Acknowledgment

I would like to use this chance to express my sincere gratitude to my supervisor, Lukas
Unglehrt, for his invaluable assistance and mentoring throughout this work. He was always
willing to share his expertise, inspiring ideas and insightful suggestions to guide me through
the obstacles in my research. I have truly enjoyed the moments discussing numerical methods
on the whiteboard or by the desk in his office. This work would not have been possible
without his continuous support. I would also like to convey my special regards to Prof. Dr.-
Ing. Michael Manhart for giving me the opportunity to pursue my Master thesis at the chair
of Hydromechanics at the Technical University of Munich.
Some special words of gratitude go to my friends, Yaseen Hago and Sulaiman Fadlallah who
have always been a major source of moral support, joy and happiness. My thanks extend to
my colleagues from the Computational Mechanics Masters program, especially, Mahmoud
Zidan, Mahmoud Ammar and Rahul Krishna for making my life in Munich a wonderful
experience.
There are no words that could possibly express an appreciation to my parents, Dr. Mes-
saoud Boulbrachene and M.D. Fouzia Saadni. Their love, encouragement and never end-
ing support shaped me and provided me strength to achieve my goals and come this
far.

I

Abstract

First, a second-order and fourth-order discretization schemes for the incompressible Navier-
Stokes equations on staggered grids are implemented. Two spatial dimensions are considered
and the discretizations are carried out for Cartesian uniform and non-uniform grids. Imple-
mentations are then verified and the order of accuracy of the adopted spatial and temporal
discretization schemes is validated. Next, an Immersed Boundary method (IBM) with a
direct forcing strategy is integrated with both flow solvers to simulate fluid-solid interac-
tion problems. The continuous IB method employs a smoothed approximation of the Dirac
delta function with a specific order of accuracy to smear (regularize) the immersed boundary
forces over the adjacent fluid cells. The accuracy of the solver then becomes dependent on
the order at which the coupling quantities are interpolated. In the literature, there exist dif-
ferent second-order regularized delta-function variants which are well-suited to use with the
second-order finite volume solver. However, an appropriate fourth-order regularized delta
function is not available and its detailed derivation is presented. At last, several numeri-
cal tests with smooth and non-smooth velocity fields are conducted to observe the rate of
convergence achieved of both IBM solvers.

II

Contents

Acknowledgment I

Abstract II

List of Figures VI

Nomenclature VII

1. Introduction 1
1.1. Motivation . 1

2. Background 2
2.1. Navier-Stokes equations . 2
2.2. Indicial notation and staggered grid generation 3
2.3. Conservation of momentum and conservation of mass 7
2.4. Projection Method . 8
2.5. Time integration scheme . 9
2.6. The Immersed Boundary Method . 10

3. Finite Volume Discretization of Navier-Stokes on Staggered Grids 12
3.1. Second-order discretizations on uniform and non-uniform grids 12

3.1.1. Semi-Discretized equation on uniform grids 12
3.1.2. Semi-Discretized equation on non-uniform grids 13
3.1.3. Formal second-order discrete Laplacian operator 15

3.2. Fourth-order discretizations on uniform and non-uniform grids 17
3.2.1. Cell-centered deconvolution of velocity 17
3.2.2. Cell-centered deconvolution of pressure 18
3.2.3. Filtering for the computation of convected velocities and first deriva-

tives on uniform grids . 18
3.2.4. Divergence free convective velocities 20
3.2.5. Convective fluxes with nonlinear correction 21
3.2.6. Formal fourth-order discrete Laplacian operator 22

3.3. Validation and Numerical Test Cases . 23
3.3.1. Classical and Convected Taylor-Green vortex test cases 23

4. The Immersed Boundary Method 29
4.1. Mathematical formulation . 30
4.2. Derivation of fourth-order regularized delta-function 35
4.3. Integration of IB solver with the fourth order uniform FV code 39

III

IV

4.4. Numerical Tests . 40
4.4.1. Taylor-Green vortex with an embedded circle 40
4.4.2. Oscillating channel flow . 45
4.4.3. Stokes first problem . 48

5. Conclusion and Outlook 51

Bibliography 55

A. Appendix 56
A.1. Cell-centered deconvolution of velocity on non-uniform grids 56
A.2. Cell-centered deconvolution of pressure on non-uniform grids 57
A.3. Fourth-order explicit scheme for convected velocity 58
A.4. Fourth-order explicit scheme for the first derivative 59
A.5. Fourth-order interpolation of convective velocities aligned with the momentum

cell on non-uniform grids . 59
A.6. Fourth-order Laplacian operator on uniform grids 60

List of Figures

2.1. (a) Colocated grid setting. (b) Staggered grid setting. 4
2.2. Arrangement of variables on a nonuniform staggered grids. 4
2.3. Successive stretched grid refinement with sx = sy = 0.8. (a) 32 cells. (b) 64

cells. 5
2.4. Non-uniform grid. (a) Initial grid. (b) Refined grid. 6
2.5. (a) Body conforming mesh. (b) IB-method Cartesian uniform mesh. 11

3.1. Stencil required for the computation of u-cell fluxes. 13
3.2. Fields at t = 0s (a) u-velocity field (b) v-velocity field (c) pressure field . . . 23
3.3. Maximum error of inviscid TGV in (a) Second-order scheme (b) fourth-order

scheme. 24
3.4. Convergence rates of the second-order scheme for (a) Classic TGV (b) Con-

vected TGV. 25
3.5. Convergence rates of the fourth-order scheme for (a) Classic TGV (b) Con-

vected TGV. 26
3.6. Convergence rates of schemes at non-uniform staggered grids. (a) second-

order (b) fourth-order. 27
3.7. Temporal convergence test results . 28

4.1. Eulerian and Lagrangian locations. 29
4.2. (a) Interpolation of Eulerian velocities. (b) Spreading of a Lagrangian force. 32
4.3. Regularized delta functions from the literature 34
4.4. (a) Multiple evaluations of the linear system of equations (4.17). (b) Derived

regularized delta function with modified moment conditions. 37
4.5. Two-dimensional Regularized delta function. 38
4.6. Embedded circle in the square computational domain. 40
4.7. Rate of convergence of the L∞ of the error. 41
4.8. Spatial distribution of the error throughout the computational domain. . . . 42
4.9. Rate of convergence of no-slip condition L∞ norm. 42
4.10. Translation invariance of the derived regularized delta function 43
4.11. (a) Embedded circle in the square computational domain. (b) Rate of con-

vergence of no-slip condition L∞ norm. 43
4.12. Using the regularized delta by [Peskin, 2002]. (a) The spatial distribution of

the error throughout the computational domain. (b) Translation invariance. 44
4.13. IBM temporal convergence test results. 44
4.14. Immersed boundaries representing the boundaries of the channel. 46
4.15. Rate of convergence of the maximum error for the second and fourth-order

implementations. 46
4.16. Spatial distribution of error for: (a) Second-order code, (b) Fourth-order code. 47

V

List of Figures VI

4.17. Stokes first problem . 48
4.18. Immersed boundary representing the moving wall 49
4.19. Rate of convergence of the maximum error for the second and fourth-order

implementations. 49
4.20. Spatial distribution of error for: (a) Second-order code, (b) Fourth-order code. 50

Nomenclature

α1, α2, α3 Filter coefficients for a fourth-order convected velocity

α4, α5, α6 Filter coefficients for a fourth-order first derivative

β1, β2, β3 Coefficients of the cell-centered deconvolution for momentum
cell

β4, β5, β6 Coefficients of the cell-centered deconvolution for pressure cell

δh Regularized delta function

∆t Time step

∆x,∆y,∆z Grid spacing in x, y, z directions

∆xis,∆yjs Staggered grid spacing in x, y directions

λi,1−4 Coefficients of the divergence-free convective velocity aligned
with the momentum cell

C, F Convective and diffusive coefficients matrices

D Discrete approximation operator of the discrete divergence

D2 Second-order approximation of the discrete divergence

D4 Fourth-order approximation of the discrete divergence

F Lagrangian force

f Eulerian force

Fc, Fp, Fd Sum of convective, pressure and diffusive fluxes

G Discrete approximation operator of the discrete gradient

G2 Second-order approximation of the discrete gradient

G4 Fourth-order approximation of the discrete gradient

L2 Discrete Laplace operator of the second-order projection
method

L4 Discrete Laplace operator of the fourth-order projection
method

VII

Nomenclature VIII

RHS Discrete sum of the convective, pressure and diffusive fluxes at
Lagrangian positions

rhs Discrete sum of the convective, pressure and diffusive fluxes at
Eulerian positions

u Velocity vector

U∗ Intermediate velocity vector at Lagrangian positions

u∗ Intermediate velocity vector at Eulerian points

X Lagrangian force point coordinates

x Eulerian grid point coordinates

u, v Convective velocity in x, y directions

ν Kinematic viscosity

Ω Computational domain

Ωi, ΩSis, ΩSjs Pressure, u-momentum and v-momentum cells control volumes

φ(r) Regularized delta function kernel

φxy Cell-averaged quantity

φy, φx Vertical edge and horizontal edge averaged quantity

ρ Density

θis,1−4 Coefficients of the divergence-free convective velocity normal to
the momentum cell

M̃ Modified discrete moment condition

h mesh width

M Discrete moment condition

NL Number of Lagrangian force points on the immersed body

q Number of moment conditions

s′x, s
′
y Refined grid constant stretching factors along x and y-

coordinates

sx, sy Constant stretching factors along x and y-coordinates

T Computational time

u, v Convected velocity in x, y directions

xis, yjs Staggered coordinates in x, y directions

1. Introduction

1.1. Motivation

Fluid flows can be described by Partial Differential Equations (PDE) which are quite com-
plex in nature. In few particular cases only, these equations can be simplified and solved
analytically. Therefore, Computational Fluid Dynamics (CFD) is used for the purpose of
generating approximate solutions to fluid flows by employing numerical schemes replacing
the system of partial differential equations by a system of algebraic equations which can
then be solved on a computer. This process includes subdividing the domain of interest in
space and time, hence providing solutions at discrete locations in space and time. Direct
Numerical Simulation (DNS) serves as an accurate tool for solving laminar as well as turbu-
lent fluid flows. However, the method becomes extremely expensive in the latter case as the
whole range of spatial and temporal scales must be resolved. Mainly, two factors affect the
quality of the numerical solution obtained, namely, grid resolution and the accuracy of the
numerical scheme used. The use of higher-order schemes shows its great advantage in three-
dimensional simulations. While its cost is linearly proportional to second-order scheme, a
cubic reduction of the number of grid points is granted [Hokpunna, 2009]. In this work,
we choose to use the Finite Volume Method (FVM) as a discretization technique for the
governing equations. This method gained its great popularity due to its built-in local as well
as global conservation properties.
In engineering applications of CFD, it is very common to face fluid-solid interaction prob-
lems. These problems arise due to the existence of an interface between any two materials
with different physical properties. A broad range of examples include fluid flow around an
automotive engine, blood flow inside the beating heart or flows around flapping wings. The
analysis of unsteady fluid flows evolving inside or around bodies of often complex geometries
poses a great challenge to numerical simulations. Solving such problems with a technique
employing a pre-defined time invariant grid can be an attractive option, as the generation
of the difficult time consuming boundary fitted mesh can be avoided. An example of such
technique is the immersed boundary method. Studying the order of accuracy of this method
has become an active field of research recently. However, this needs further analytical study
and numerical testing for higher-order schemes.

1

2. Background

This chapter defines the Navier-Stokes equations we intend to solve numerically for incom-
pressible flows of a Newtonian fluid by the finite volume method. We then introduce the
indicial notation followed in this work for staggered grid systems. Next, we present the pro-
jection method adopted to ensure incompressibility as we advance the solution in time. Then,
the time integration scheme employed in this work is presented by means of a pseudo-code
and we finally close this chapter by a theoretical introduction to the Immersed Boundary
Method.

2.1. Navier-Stokes equations

Navier-Stokes equations are the governing equations of Fluid Dynamics. Theoretically, these
equations arise from the conservation of mass and the conservation of momentum. In the
scope of this work, we confine ourselves to viscous incompressible fluids which can be de-
scribed by the incompressible Navier-Stokes equations:

∂u

∂t
= (u · ∇) u + ν∆u− 1

ρ
∇p+ f

∇ ·u = 0

 in Ω× [0, T]. (2.1)

Here, the variables u = u(x,t) and p = p(x, t) denote the velocity vector and the pressure
of the fluid at some point x in the domain Ω at a time t. The kinematic viscosity ν and the
density ρ of the fluid occupying the domain are constants. For two-dimensional flows, we
can write u = (u, v) = (u(x, y, t), v(x, y, t)) and p = p(x, y, t). These equations relate the
rate of local time change of the velocity of a fluid to the summation of forces acting upon it.
The first term on the right hand side is known as the convective term and it represents the
inertia forces acting on the fluid. The second term is known as the diffusive term and it is
responsible for the dissipation of energy in a fluid flow. The third term which is called the
pressure term accounts for the pressure forces developing in the case of a present pressure
gradient. The last term f = (fx(x, y, t), fy(x, y, t)) represents the density of the body forces
acting upon the fluid.
More details related to the physical background and the derivation of these equations can be
found in [Batchelor, 2000]. This set of non-linear partial differential equations can sometimes
be simplified to obtain the exact solution describing the flow profile. However, in the majority
of the practical cases, the analytical solution becomes intractable and the solution must be
approximated numerically.
In this work, we wish to use the finite volume method (FVM) to evaluate the partial differ-
ential equation (2.1) in the form of algebraic equations. The initial step in the finite volume
discretization process is to integrate the governing equations over the finite volumes (Ω) into

2

Background 3

which the domain has been partitioned. The integral form of the conservation law (2.1)
reads:

∂

∂t

∫
Ω

ui dV = −
∫

Ω

∂uiuj
∂xi

dV −
∫

Ω

1

ρ

∂p

∂xi
dV +

∫
Ω

ν
∂2ui
∂x2

j

dV,∫
Ω

∂ui
∂xi

dV = 0.

Gauss theorem is then employed to convert volume integrals to surface integrals over the
boundaries of the finite volume (Γ):

∂

∂t

∫
Ω

ui dV = −
∫

Γ

uiujnj dA︸ ︷︷ ︸
Convective flux F c

−
∫

Γ

1

ρ
pni dA︸ ︷︷ ︸

Pressure flux F p

+

∫
Γ

ν
∂ui
∂xj

nj dA︸ ︷︷ ︸
Diffusive flux F d

, (2.2)

∫
Γ

ui dA = 0. (2.3)

In the two-dimensional context, equation (2.2) states that the rate of change of a cell-averaged
quantity ui within the area Ω is equal to the net flux across its boundary Γ. In order to
solve these equations numerically, one has to approximate the area and boundary integrals
as well as the fluxes defined in equations (2.2) and (2.3).

2.2. Indicial notation and staggered grid generation

When we discretize the Navier-Stokes equations on Cartesian grids, we have the
freedom to arrange the primary variables on the grid. Colocated and staggered
[Harlow and Welch, 1965] arrangements represent the main two choices of primary variables
arrangement on the computational grid. In colocated grids, all unknown dependent variables
(u, v and p) are stored at one position sharing the same control volume as shown in Fig
2.1a. An immediate consequence of this arrangement is a minimized number of coefficients
to be computed when the governing equations are discretized and a simpler implementation
in complicated solution domains. In contrast to colocated arrangement, staggered grids have
the primary variables situated at different locations each having its own control volume as
shown in Fig 2.1b. Staggered grids are known for their biggest advantage of the strong
coupling between the pressure and velocities, which in turn eliminates the odd-even decou-
pling leading to the checkerboard pressure problem. Colocated grids checkerboard problem
is not restricted to low order discretization schemes only and can be observed on higher
order schemes when an even number of cells is used [Pereira et al., 2001]. In order to avoid
additional treatment of pressure in colocated grid setting, staggered grids were used in this
work. While on uniform two-dimensional Cartesian grids pressure cell edges lie midway
between the cell centroids, on non-uniform grids only one of these two properties can be
satisfied. Here, the former one was chosen and one can now define the pressure points to be
(xi, yj) with i = 1, . . . , Nx and j = 1, . . . , Ny. On the other hand, the staggered u and
v-velocity points are defined as (xis, yj) and (xi, yjs), respectively, where xis = 1

2
(xi + xi+1)

and yjs = 1
2

(yi + yi+1). This grid definition can be shown in Fig 2.2. The control volume of
the pressure, u and v-momentum cells can now be defined as Ωi,j = [xis−1, xis]× [yjs−1, yjs],

Background 4

ΩSis,j = [xi, xi+1]× [yjs−1, yjs], and ΩSi,js = [xis−1, xis]× [yj, yj+1], respectively.

(a) (b)

Figure 2.1: (a) Colocated grid setting. (b) Staggered grid setting.

pi,j pi+1,juis,j

pi,j+1 pi+1,j+1

uis+1,j

vi,js vi+1,js

vi,js+1 vi+1,js+1

uis,j+1

Figure 2.2: Arrangement of variables on a nonuniform staggered grids.

Background 5

In this work, discretizations of the governing equations are carried out for uniform as well
as non-uniform two-dimensional Cartesian grids with constant stretching factors in each
dimension. Defining the length of ith u-momentum cell to be ∆xis = xi+1−xi, the stretching
factor reads:

sx =
∆xis

∆xis−1

, (2.4)

with the immediate consequence of using a constant stretch factor:

∆xis = sx ∆xis−1 = s2
x ∆xis−2 = skx ∆xis−k.

Now, we can define the length of the ith pressure cell (∆xi = xis−xis−1) as:

∆xi =
1

2
(∆xis−1 + ∆xis) =

∆xis−1

2
(1 + sx). (2.5)

The use of non-uniform grids is often considered to be better than uniform grids for the
same number of cells as it becomes advantageous when we seek to capture sharp gradients
and nonlinearities in some spatial locations with minimal numerical error and with a cheaper
system to be solved. For simplicity, this work considers only domains with periodic boundary
conditions, hence the periodicity of the computational grid. Fig 2.3 shows an example of a
periodic non-uniform grid in two spatial dimensions.

(a) (b)

Figure 2.3: Successive stretched grid refinement with sx = sy = 0.8. (a) 32 cells. (b) 64 cells.

When we refine non-uniform grids, we choose to insert new grid points so that a constant
stretch factor is maintained throughout the fine grid. Referring to Fig 2.4b we can write the
stretch factor of the refined grid as:

s′x =
∆x′is,j

∆x′is−1,j

=
∆x′is+1,j

∆x′is,j
=

∆x′is+2,j

∆x′is+1,j

.

We can show the relation between the stretching factor of the coarse and the fine grids by
the following arithmetic:

Background 6

∆x′is+1,j + ∆x′is+2,j

∆x′is−1,j + ∆x′is,j
= sx −→

∆x′is+1,j(1 + ∆x′is+2,j/∆x′is+1,j)

∆x′is−1,j(1 + ∆x′is,j/∆x′is−1,j)
= sx,

s′x∆x
′
is,j(1 + s′x)

∆x′is−1,j(1 + s′x)
= sx −→ (s′x)

2 = sx,

Hence,

s′x =
√
sx (2.6)

From this relation, it can be said that the grid stretching factor always approaches the value
1 when the grid is refined.

xi,j xi+1,j xi+2,j xi+3,j

(a)

xi,j xi+1,j xi+2,j xi+3,j

x′i−1,j x′i,j x′i+1,j x′i+2,j x′i+3,j x′i+4,j

(b)

Figure 2.4: Non-uniform grid. (a) Initial grid. (b) Refined grid.

Background 7

2.3. Conservation of momentum and conservation of mass

As was mentioned in section 2.1, the Navier-Stokes equations describe the conservation of
momentum per unit mass (velocity) in each spatial dimension. Hence on two-dimensional
staggered grids, we conserve the cell-averaged velocities uxyis,j, v

xy
i,js for the x and y momen-

tum, respectively. The cell-averaged values of an x-staggered variable (u-velocity) and a
y-staggered variable (v-velocity) are defined as:

uxyis,j =
1

ΩSis,j

∫ yjs

yjs−1

∫ xi+1

xi

u(x, y) dxdy, (2.7)

vxyi,js =
1

ΩSi,js

∫ yj+1

yj

∫ xis

xis−1

v(x, y) dxdy, (2.8)

and that of a collocated variable (pressure) reads:

pxyi,j =
1

Ωi,j

∫ yjs

yjs−1

∫ xis

xis−1

p(x, y) dxdy. (2.9)

In a similar way, the edge-averaged value of any variable can be defined by reducing the
double integration to a single one. For example, uyi,j is the edge-averaged u-velocity along
the left boundary of a u-momentum cell.
Now, from the integral form of the NS equations (2.2), we can write the semi-discretitized
u-momentum equation as:

∂uxyis,j
∂t

=
1

ΩSis,j

(
−F c

is,j − F
p
is,j + F d

is,j

)
, (2.10)

where F c
is,j, F

p
is,j and F d

is,j are the net convective, pressure and diffusive fluxes upon a u-cell,
respectively. These fluxes are defined as:

F c
is,j =

(
[uu]yi+1,j − [uu]yi,j

)
∆yi +

(
[vu]xis,js − [vu]xis,js−1

)
∆xis, (2.11)

F p
is,j =

(
pyi+1,j − p

y
i,j

)
∆yj +

(
pxis,js − pxis,js−1

)
∆xis, (2.12)

F d
is,j =

(
∂u

∂x

∣∣∣y
i+1,j
− ∂u

∂x

∣∣∣y
i,j

)
∆yi +

(
∂u

∂y

∣∣∣x
is,js
− ∂u

∂y

∣∣∣x
is,js−1

)
∆xis. (2.13)

Attention should be paid to the distinction made between the convected velocity u and the
convective velocity u which has to be conservative (i.e the divergence of this velocity over
momentum cells has to vanish).
The continuity equation accompanying the Navier-Stokes equations describes the conserva-
tion of mass. On staggered grids, this is enforced by taking the divergence over the pressure
cells as:

∇ ·u =
∂u

∂x

∣∣∣y +
∂v

∂y

∣∣∣x =
1

∆xi

(
uyis,j − u

y
is−1,j

)
+

1

∆yj

(
vxi,js − uxi,js−1

)
(2.14)

All of the discrete equations introduced up to this point are exact and their second-order and
fourth-order approximations are the concern of chapter 3.

Background 8

2.4. Projection Method

When dealing with unsteady flow cases, a time integration scheme has to be implemented
to advance the solution in time. However, this alone cannot guarantee the conservation of
mass in the updated field, and therefore, the Fractional Time Step Method (FTSM) using
the projection method was employed in this work [Chorin, 1967]. The projection method
consists of three steps: a) Computing an intermediate velocity which does not satisfy the
incompressibility constraint, b) Solving the pressure Poisson equation, and c) Projecting the
intermediate velocity to the space of divergence free vector fields. To show how this method
works, we consider the simple case of Explicit Euler for time advancement. Letting un, u∗

and un+1 to be the current, intermediate and the updated velocity fields, respectively, then
one can write:

un+1 = un + ∆t
(
rhsn + Pn+1

)
, (2.15)

u∗ = un + ∆t (rhsn + Pn) , (2.16)

where rhsn regroups the convective and diffusive terms at the current time, (Pn+1, Pn) are
the current and the updated pressure terms, respectively. Subtracting (2.16) from (2.15)
yields:

un+1 − u∗ = ∆t dPn+1,

with, dPn+1 = Pn+1 −Pn = −1

ρ
∇dpn+1.

(2.17)

In contrast to the intermediate velocity field, the updated velocity field must satisfy the
continuity equation. Taking the divergence of (2.17) yields the pressure Poisson equa-
tion:

∇ ·∇dpn+1 =
ρ

∆t
∇ ·u∗. (2.18)

The pressure computed in (2.18) is then used to project the intermediate velocity and obtain
a divergence-free velocity field. From (2.17) we can write:

un+1 = u∗ − ∆t

ρ
∇dpn+1,

pn+1 = pn + dpn+1.

(2.19)

Introducing the discrete divergence D and gradient G operators to (2.18) results in its
discrete form:

DGp =
ρ

∆t
Du∗,

where the matrix product DG is known as the discrete Laplacain. While the second-order
divergence and gradient operators are to be used for the second-order finite volume imple-
mentation, the fourth-order operators are employed for its fourth-order counterpart. In this
work, we tend to match the order of the discrete gradient operator used to evaluate the
pressure gradient over the momentum cells together with that of the formal order Laplacian,
such that consistent projection methods are utilized.

Background 9

2.5. Time integration scheme

In this work, the explicit third-order low storage Runge-Kutta (RK3) scheme [Williamson, 1980]
was used to advance the solution in time. Algorithm 1 from [Peller, 2010] shows the three
RK sub-steps along with the projection method. This time integration scheme is third-order
accurate for the velocity and first-order accurate for the pressure.

Algorithm 1: Low storage RK3 with the projection method

initialize u, v and p fields
n← 1
while n < number of time steps do

First RK sub-step:

rhs1 ← Fc(un) + Fd(un) + Fp(pn)
un ← un + 1

3
∆t rhs1 // Intermediate velocity

∆dp← ρ
1
3

∆t
∇ ·un // Correct pressure

un ← un −
1
3

∆t

ρ
∇dp // Project fields

pn ← pn +∇dp

Second RK sub-step:

rhs2 ← Fc(un) + Fd(un) + Fp(pn)

rhs2 ← rhs2 − 5
9

rhs1

un ← un + 15
16

∆t rhs2 // Intermediate velocity

∆dp← ρ
3
4

∆t
∇ ·un // Correct pressure

un ← un −
3
4

∆t

ρ
∇dp // Project fields

pn ← pn +∇dp

Third RK sub-step:

rhs1 ← Fc(un) + Fd(un) + Fp(pn)
rhs1 ← rhs1 − 153

128
rhs2

un ← un + 8
15

∆t rhs1 // Intermediate velocity

∆dp← ρ
∆t
∇ ·un // Correct pressure

un+1 ← un − ∆t
ρ
∇dp // Project fields

pn+1 ← pn +∇dp

n← n+ 1

Background 10

2.6. The Immersed Boundary Method

To simulate a wall bounded fluid flow or particle suspension, one has to solve the Navier-
Stokes (NS) equations in the fluid domain with no-slip boundary conditions imposed at the
interface between the fluid domain and the solid object. Among the schemes that have been
applied to moving interface problems, the most common one is the conventional approach
of using a body-conforming mesh as shown in Fig 2.5a to directly enforce the boundary
conditions. This strategy is followed by the Arbitrary Lagrangian-Eulerian (ALE) method
[Donea et al., 2004], which combines the advantages of both Lagrangian description follow-
ing an individual parcel as it moves through space and Eulerian description focusing on fixed
locations in the space. Although adaptive local mesh refinement techniques have been in
continuous development, this method requires coordinate transformation and complex re-
meshing depending on solid particles displacements as time evolves, leading to a substantial
computational cost. To avoid repeated re-meshing, another alternative is to mesh the whole
computational domain consisting of the fluid and the solid with a fixed structured Cartesian
grid. Such an embedded domain method is called the Immersed Boundary method (here-
inafter also referred to as IB-method).
The Immersed Boundary method was first introduced by Peskin in 1972 [Peskin, 1972] where
it was used to simulate cardiac mechanics and associated blood flow. Fig 2.5b shows an ex-
ample of an IBM mesh. As the suspended solids are interpreted as a part of the fluid domain,
the grid is not necessarily conforming to the body geometry. In order to incorporate the
impact of the solid phase on the flow, one has to manipulate the governing equations in an
appropriate way. Since the original IB-method was introduced, numerous techniques were
adapted and developed based on the IB principle. According to [Mittal and Iaccarino, 2005],
depending on the approach the boundary conditions are incorporated to the governing equa-
tions, these techniques can be divided into two main categories, namely, the discrete forcing
approach and the continuous forcing approach.
In the discrete forcing method, the governing equations are first discretized with no consid-
erations given to the immersed boundary, then its influence is brought up by manipulating
the discretized system of equations in such a way to enforce the no-slip condition along the
fluid-solid interface. This method can be seen similar to the technique of applying a Dirichlet
boundary conditions (homogeneous or non-homogeneous) to the outer boundary of the com-
putational domain Ω with the difference that this modifications can also be applied to a set
of an interior cells. Examples of this method are the Ghost cell finite difference approach and
the Cut cell finite volume approach discussed thoroughly in [Mittal and Iaccarino, 2005].
On the other hand, the continuous forcing method, such that of [Peskin, 1972] and the
virtual boundary method of [Goldstein et al., 1993], integrates the boundary conditions by
adequately formulating a forcing term f and adding it to the right hand side of the con-
tinuous governing equations. In contrast to its discrete counterpart, the continuous forcing
approach does not allow the prescription of velocity values at particular cells of the finite
volume mesh. Therefore, it is found to be less accurate than the discrete approach in pre-
serving the sharpness of the immersed boundary. However, three major advantages can be
stated for this method of boundary conditions incorporation. From a physical point of view,
associating the presence of a solid body by means of a forcing term can be thought of as
using a free body diagram to describe the interaction between the fluid and solid phases. The
second advantage of the continuous approach is its flexibility to include additional properties

Background 11

of the immersed solid, such as its material properties. This feature enables one to simulate
the interaction between elastic objects and a fluid. Furthermore, continuous forcing methods
are more practicable for moving immersed boundaries due to their simple formation.

S

Ω

(a)

S

Ω

(b)

Figure 2.5: (a) Body conforming mesh. (b) IB-method Cartesian uniform mesh.

After these general considerations, it is noteworthy to mention that the continuous forcing
immersed boundary method proposed by [Uhlmann, 2005] was adopted in this work. The
reasons behind this choice is the weak dependency of the method on the underlying dis-
cretization scheme, its ability to easily treat moving immersed boundaries and its simplicity
to be implemented in a computer code.

3. Finite Volume Discretization of
Navier-Stokes on Staggered Grids

In this chapter, the second-order and the fourth-order finite volume discretizations of
the Navier-Stokes equations are presented. The approximations addressed here are for
both the uniform and non-uniform staggered grid systems. In addition, a derivation
of the discrete Laplacian operator with a formal order of accuracy is demonstrated for
each case. Finally, we close this chapter by validating the implemented schemes numeri-
cally.

3.1. Second-order discretizations on uniform and
non-uniform grids

In the second-order context, the cell-averaged and the edge-averaged values are approximated
by the cell-centered and edge-centered values, respectively. Fluxes through the boundaries of
a finite volume are approximated using neighboring cell-centered values. In the following, we
derive the discretization for uniform and non-uniform staggered grids. We restrict the dis-
cretization presented to the u-momentum equation as the analogous set of the v-component
is straightforward.

3.1.1. Semi-Discretized equation on uniform grids

Fig 3.1 shows the cell-centered values needed for the evaluation of u-momentum cell
fluxes. Replacing the surface integral by a summation of flux terms over the faces of
the cell [Ferziger and Peric, 2001, p. 71], then the convective, diffusive and pressure fluxes
read:

F c
is,j = (ui+1,j ui+1,j − ui,j ui,j) ∆y + (vis,js uis,js − vis,js−1 uis,js−1) ∆x,

F p
is,j =

1

ρ
(pi+1,j − pi,j)∆y,

F d
is,j = ν

[(
∂u

∂x

∣∣∣
i+1,j
− ∂u

∂x

∣∣∣
i,j

)
∆y +

(
∂u

∂y

∣∣∣
is,js
− ∂u

∂y

∣∣∣
is,js−1

)
∆x

]
,

with the second-order approximation of the edge-centered values:

ui+1,j =
1

2
(uis+1,j + uis,j), uis,js =

1

2
(uis,j+1 + uis,j),

vis,js =
1

2
(vi,js + vi+1,js),

∂u

∂x

∣∣∣
i+1,j

=
uis+1,j − uis,j

∆x
,

12

Finite Volume Discretization of Navier-Stokes on Staggered Grids 13

∂u

∂y

∣∣∣
is,js

=
uis,j+1 − uis,j

∆y
.

Hence the semi-discretized form of equation (2.2) for the u-velocity component reads:

∂u

∂t
=

1

4

[
(uis,j + uis−1,j)

2 − (uis+1,j + uis,j)
2

∆x

+
(vi,js−1 + vi+1,js−1)(uis,j + uis,j−1)− (vi,js + vi+1,js)(uis,j+1 + uis,j)

∆y

]
+

1

ρ

[
pi,j − pi+1,j

∆x

]
+ ν

[
uis+1,j − 2uis,j + uis−1,j

∆x2
+
uis,j+1 − 2uis,j + uis,j−1

∆y2

]
.

∆x

∆yuis+1,juis,juis−1,j

uis,j+1

uis,j−1

vi+1,jsvi,js

vi,js−1 vi+1,js−1

pi,j pi+1,j

Figure 3.1: Stencil required for the computation of u-cell fluxes.

3.1.2. Semi-Discretized equation on non-uniform grids

The discretization adopted in this section was described by [Verstappen and Veldman, 2003].
In their work, they showed the importance of using a symmetry-preserving discretization to
conserve the total mass, momentum and kinetic energy. This section will briefly introduce
the idea behind this concept, followed by the discretization afterwards.
A symmetry-preserving discretization is known in the literature as mimetic discretization,
and it denotes that the symmetry properties of the underlying differential operators are
preserved in their discrete counterparts. While the convective operator is approximated by
a skew-symmetric discrete operator, the diffusive operator is approximated by a symmetric
positive-definite one. We let Ω denote a positive-definite diagonal matrix representing the
size of momentum cells control volumes and we define the convective, diffusive and the
divergence coefficient matrices as C(uh), F and D, respectively. The conservation property
and stability then can be shown by first writing the semi-discretized NS equations in a
matrix-vector notation as:

Finite Volume Discretization of Navier-Stokes on Staggered Grids 14

Ω
du

dt
+ C(u)u + Fu−Dᵀp = 0, Du = 0,

where ᵀ denotes the transpose of a matrix. Writing the evolution of the kinetic energy
(uᵀΩu) as:

d (uᵀΩu)

dt
= −uᵀ (C(u) + Cᵀ(u)) u− uᵀ(F + Fᵀ)u + uᵀ(Dᵀp) + (Dᵀp)ᵀu

= −uᵀ(F + Fᵀ)u ≤ 0,

where the convective term cancels out as C is skew-symmetric (Cᵀ = −C), and the pressure
term cancels out because the gradient matrix is equal to the negative of the transpose of
the divergence matrix. Hence under this condition, the energy of the discrete solution is
conserved if the flow is inviscid, and decreases in time if dissipation is present.
In order to comply with the proposition stated above, the convected velocities at momentum
cell edges have to be interpolated with weights of 1

2
:

ui+1,j =
1

2
(uis+1,j + uis,j).

In contrast, the convective velocities (u) are linearly interpolated to momentum cell edges
by means of a second-order linear interpolation:

ui+1,j = ωi+1,j uis+1,j + (1− ωi+1,j) uis,j, with ωi+1,j =
xi+1,j − xis,j
xis+1,j − xis,j

.

This linear interpolation can be shown to give a divergence-free field for the convective
velocity at momentum cells. The diffusive term is discretized with a symmetric positive-
definite diffusive operator:

∂u

∂x

∣∣∣
i+1,j

=
uis+1,j − uis,j
xis+1,j − xis,j

.

In spite of the local truncation error of this approximation being only first-order,
[Manteuffel and White, 1986] showed that the local truncation error is not decisive and
proved that this approximation delivers second-order accurate solution on non-uniform grids.
We shall present this behavior following the detailed explanation in [Ferziger and Peric, 2001,
p. 61]. Referring to the non-uniform grid in Fig 2.4 , we write the Taylor expansion of uis+1,j

and uis,j around xi+1,j:

uis+1,j = ui+1,j + (xis+1,j − xi+1,j) u
′
i+1,j +

(xis+1,j − xi+1,j)
2

2
u′′i+1,j +H, (3.1)

uis,j = ui+1,j − (xi+1,j − xis,j) u′i+1,j +
(xi+1,j − xis,j)2

2
u′′i+1,j +H, (3.2)

where H denotes higher-order terms. Subtracting (3.2) from (3.1) and solving for the first
derivative we obtain:

u′i+1,j =
uis+1,j − uis,j
xis+1,j − xis,j

− (xis+1,j − xi+1,j)
2 − (xi+1,j − xis,j)2

2(xis+1,j − xis)
u′′i+1,j +H.

Finite Volume Discretization of Navier-Stokes on Staggered Grids 15

Employing some of the grid definitions introduced in section 2.2, we can simplify the leading
truncation error term to:

ε = −
∆x2

is+1,j −∆x2
is,j

4(∆xis+1,j + ∆xis,j)
u′′i+1,j = −∆xis+1,j −∆xis,j

4
u′′i+1,j =

∆xis,j(1− sx)
4

u′′i+1,j.

To see what happens when the grid is refined, we take the ratio of the leading trun-
cation error of a coarse and a refined grid (with primed parameters) at the point
xi+1,j:

r =
ε

ε′
=

∆xis,j (1− sx)
∆x′is,j (1− s′x)

. (3.3)

From 2.4b, we write ∆xis,j in terms of ∆x′is,j as:

∆xis,j = ∆x′is + ∆x′is−1 = (s′x + 1)∆x′is−1.

Substituting this relation into equation (3.3) we obtain:

r =
(1 + s′x)

2

s′x′
. (3.4)

When the grid is uniform (i.e s′x = 1), this ratio has the value 4 which implies a second-
order rate of convergence. However, in in expanding grids (i.e s′x > 1) or contracting grids
(i.e s′x < 1) the ratio becomes strictly greater than 4. This implies that a rate of con-
vergence higher than 2 is achieved. Since that the stretching factor tends to the value 1
as the grid is refined (see section 2.2), error will converge at a second-order asymptoti-
cally.

3.1.3. Formal second-order discrete Laplacian operator

Solving the pressure Poisson equation (2.18) in the projection method is an essential step
to enforce the continuity equation on the velocity field. This step is known to be the most
consuming part for the computations of incompressible flows. Among the different alterna-
tives available to solve this equations (direct solver or an iterative solver), a direct solver
based on the LU factorization was used to solve the Poisson equation in its matrix-vector
notation:

Lp =
ρ

∆t
Du∗, (3.5)

where L is the Laplacian square matrix of size [NxNy × NxNy], p is the pressure in each
computational cell organized into a column vector of size [NxNy×1] and Du∗ is a [NxNy×1]
vector containing the divergence of the predicted velocity field over each respective compu-
tational pressure cell. As was already mentioned in 2.4, the discrete Laplace operator is
defined as the inner product of a discrete divergence and a discrete gradient operators, i.e
L = DG. In the context of staggered grid system, the gradient operator is applied over a
momentum computational cell whereas the divergence is applied over pressure computational

Finite Volume Discretization of Navier-Stokes on Staggered Grids 16

cells. Having this in mind and employing the second-order divergence and gradient opera-
tors, the formal second-order discrete Laplace operator L2 applied to pressure on uniform
grids reads:

L2p = D2xG2xp+D2yG2yp

=
pi−1,j − 2pi,j + pi+1,j

∆x2
+
pi,j−1 − 2pi,j + pi,j+1

∆y2
.

For the purpose of illustration, we break-up the application of the operators on non-uniform
grids to:

1. Pressure gradient over uis,j momentum-cell:

(G2xp)is,j =
pi+1,j − pi,j
xi+1 − xi

.

2. Pressure gradient over uis−1,j momentum-cell:

(G2xp)is−1,j =
pi,j − pi−1,j

xi − xi−1

.

3. Divergence of the gradients 1 and 2 over pi,j pressure cell:

D2xG2xp =
(G2xp)is,j − (G2xp)is−1,j

xis,j − xis−1,j

=
1

xis,j − xis−1,j

[
pi+1,j − pi,j
xi+1 − xi

− pi,j − pi−1,j

xi − xi−1

]
.

Given the stretched grid definition introduced in section 2.2, we can simplify the above
expression to:

D2xG2xp =
1

∆xis−1∆xi
pi−1,j −

2

∆xis∆xis−1

pi,j +
1

∆xis∆xi
pi+1,j.

Hence, writing L2p for non-uniform grids becomes straightforward. Now one can construct
the Laplacian matrix by letting the coefficients of pi−1,j, pi+1,j, pi,j−1, pi,j+1 and pi,j be
aw, ae, as, an, and ac, respectively.
The linear system of equations below shows equation (3.5) for a computational domain
of size Nx = Ny = 3 with periodic boundary conditions applied to both spatial dimen-
sions.

ac ae aw an 0 0 as 0 0
aw ac ae 0 an 0 0 as 0
ae aw ac 0 0 an 0 0 as
as 0 0 ac ae aw an 0 0
0 as 0 aw ac ae 0 an 0
0 0 as ae aw ac 0 0 an
an 0 0 as 0 0 ac ae aw
0 an 0 0 as 0 aw ac ae
0 0 an 0 0 as ae aw ac

︸ ︷︷ ︸

L

p1,1

p2,1

p3,1

p1,2

p2,2

p3,2

p1,3

p2,3

p3,3

︸ ︷︷ ︸

p

=
ρ

∆t

(Du∗)1,1

(Du∗)2,1

(Du∗)3,1

(Du∗)1,2

(Du∗)2,2

(Du∗)3,2

(Du∗)1,3

(Du∗)2,3

(Du∗)3,3

︸ ︷︷ ︸

Du∗

Finite Volume Discretization of Navier-Stokes on Staggered Grids 17

3.2. Fourth-order discretizations on uniform and
non-uniform grids

This section treats the fourth-order finite volume discretization of the Navier-Stokes equa-
tions. It was mentioned in section 2.1 that the finite volume method describes the change of a
cell-averaged quantity by the net fluxes on the boundaries enclosing that cell. In section 3.1,
we approximated the cell-averaged and edge-averaged values by interchanging them with the
pointwise centered values. This approximation was permissible as its local truncation error
is second-order. However, this approximation is not allowed in higher-order context and an
explicit distinction should be made between these quantities.

3.2.1. Cell-centered deconvolution of velocity

Cell-centered deconvolution is known to be the approximation of an edge-average value at
the center of a cell from its neighboring cell-average values. Cell-centered deconvolution of a
momentum cell finds the edge-average u and v velocities at the boundaries of a pressure cell.
These quantities are used to evaluate the divergence of the the velocity field (conservation
of mass). The fourth-order cell centered deconvolution of a u-momentum cell can be written
as:

uyis,j = β1u
xy
is−1,j + β2u

xy
is,j + β3u

xy
is+1,j. (3.6)

The coefficients β1, β2 and β3 can be derived from the Taylor series expansion of each term
on the right hand side around xis,j. The derivation below is shown for a uniform grid
configuration where in this case, k = −1, 0, 1.

uxyis+k,j =
1

∆x

∫ xi+(k+1)∆x

xi+k∆x

uy dx

≈ 1

∆x

∫ xi+(k+1)∆x

xi+k∆x

uyis,j + (x− xis)
du

dx

∣∣∣y
is,j

+
(x− xis)2

2!

d2u

dx2

∣∣∣y
is,j

dx

≈ 1

∆x

[
uyis,jx+

(x− xis)2

2

du

dx

∣∣∣y
is,j

+
(x− xis)3

6

d2u

dx2

∣∣∣y
is,j

]∣∣∣∣∣
xi+(k+1)∆x

xi+k∆x

.

Upon the substitution of limits of integration for uis−1,j, uis,j and uis+1,j and matching the
orders of the derivatives with left hand side of (3.6), the coefficients are β1 = β3 = − 1

24
and

β2 = 13
12

. The same derivation could be applied to non-uniform grids taking into consideration
the different grid spacing of momentum cells (see Appendix A.1), employing the consistency
criterion the coefficients are found as:

β1 = − ∆x2
is

4(∆xis−1 + ∆xis)(∆xis−1 + ∆xis + ∆xis+1)
, β2 = 1− (β1 + β3),

β3 = − ∆x2
is

4(∆xis + ∆xis+1)(∆xis−1 + ∆xis + ∆xis+1)
.

These coefficients are similar to those found in [Hokpunna, 2009].

Finite Volume Discretization of Navier-Stokes on Staggered Grids 18

3.2.2. Cell-centered deconvolution of pressure

In order to write a fourth-order approximation of the pressure gradient over a momentum-
cell, it is essential to first approximate the edge-average pressure at its boundaries. Similar
to the cell-centered deconvolution above, the fourth-order approximation of the edge-average
pressure at the left boundary of a u-momentum cell reads:

pyi,j = β4p
xy
i−1,j + β5p

xy
i,j + β6p

xy
i+1,j (3.7)

On uniform grids, these coefficients are identical to the ones derived in (3.6). However, on
non-uniform grids, even though a stencil of the same width is used, pressure cell-averaged val-
ues are not situated on the centers of the cells (edges halfway between grid points). Therefore,
one has to use the following coefficients (see Appendix A.2):

β4 =
2∆x2

is + ∆xis∆xis+1 −∆xis−13∆xis −∆xis−1∆xis+1

(∆xis + 2∆xis−1 + ∆xis−2)A1

,

β6 =
2∆x2

is−1 + ∆xis−1∆xis−2 −∆xis−13∆xis −∆xis∆xis−2

(∆xis−1 + 2∆xis + ∆xis+1)A1

,

β5 = 1− (β4 + β5),

A1 = ∆xis−2 + 2∆xis−1 + 2∆xis + ∆xis+1

Here, β6 differs from the coefficient derived in [Hokpunna, 2009] with a minus sign. Other
than this difference, all other coefficients are identical.

3.2.3. Filtering for the computation of convected velocities and first
derivatives on uniform grids

The evaluation of the edge-average convected (transported) velocities and first derivatives
which are both located at the interface between momentum cells is required for the com-
putation of the convective and diffusive fluxes, respectively. These edge-averaged quantities
are located at non-staggered positions and a pre-processed adjacent cell-averaged velocities
are used for their approximation.
The concept of improving the order of approximation followed in this section was presented
by [Schwertfirm et al., 2008]. The main idea is to introduce a pre-processing step to the
second order mid-point interpolation rule and the second order central scheme for the first
derivative to enhance their spatial resolution. Using this approach, one can reduce the sten-
cil length required for each individual stencil operation and hence the number of ghost cells
layers needed. What follows is a brief description of the method.

Lets consider an operator Aexact, which if applied to a 1D velocity field, delivers u(x)op,exact =
Aexactu(x). In this context, the operator Aexact could be the interpolation or the first deriva-
tive of the field variable u(x). On the other hand, consider an approximation of this operator
to be Aapp which returns the function u(x)op,app = Aappu(x) and that these two operators
can be linked by a filter G as Aapp = G ∗ Aexact. Consequently, one can retrieve uop,exact
from uop,app in a pre-processing step if the inverse G−1 exists and commutes with Aapp as
shown:

Finite Volume Discretization of Navier-Stokes on Staggered Grids 19

uop,exact = G−1uop,app = G−1Aappu(x) = AappG
−1u(x).

Now, G−1u(x) can be performed as a pre-processing step to Aapp. Due to the fact that
constructing and inverting the filter G in physical space is difficult to accomplish, it is more
convenient to approximate the implied filter G′ ≈ G by the local explicit moving averages
formula:

ūxyis = α1u
xy
is−1 + α2u

xy
is + α3u

xy
is+1 = G′ ∗ uxyis , (3.8)

where α1, α2 and α3 denote the filter coefficients and their derivation will be explained
later in this section. By letting Q be an approximate of the filter’s inverse (Q ≈
G′−1), [Schwertfirm et al., 2008] applied the approximate deconvolution relation given by
[Stolz and Adams, 1999] :

Q(G′)M =
M∑
m=0

(I −G′)m, (3.9)

where I is the identity, and M + 1 is the number of terms taken in the deconvolution.
Given the introduced approximations, Q(G′)uxyis becomes the pre-processing step of the
field variable u(x) before the operator Aapp is applied. In addition, it was reported in
[Schwertfirm et al., 2008] that it is sufficient to use a two-term deconvolution (M=1) in (3.9)
to achieve a fourth order spatial accuracy on a uniform grid. Hence, we can write the
pre-processed field as:

Q1(G′)uxyis =
1∑

m=0

(I −G′)m ∗ uxyis = uxyis + (1−G′) ∗ uxyis

= −α1u
xy
is−1 + (2− α2)uxyis − α3u

xy
is+1.

(3.10)

Depending on the nature of the approximated operator Aapp (whether it is second-order
midpoint rule or central scheme), the filter coefficients are derived by matching terms with
the respective explicit fourth-order formula.

Fourth-order convected velocity

An approximation of the edge-average convected velocity at the left boundary of a u-
momentum cell can be written by applying the second order interpolation mid-point rule to
the pre-processed cell-averaged u-velocity field as:

uyi,j =
1

2
(Q1u

xy
is,j +Q1u

xy
is−1,j),

with,

Q1u
xy
is,j = −α1u

xy
is−1,j + (2− α2)uxyis,j − α3u

xy
is+1,j,

Q1u
xy
is−1,j = −α1u

xy
is−2,j + (2− α2)uxyis−1,j − α3u

xy
is,j,

hence,

uyi,j =
1

2

[
−α1u

xy
is−2,j + (−α1 + 2− α2)uxyis−1,j + (2− α2 − α3)uxyis,j − α3u

xy
is+1,j

]
. (3.11)

Finite Volume Discretization of Navier-Stokes on Staggered Grids 20

In order to derive the filter coefficients, one has to match the terms of equation (3.11) with
the explicit fourth-order scheme given by:

uyi,j = − 1

12
uxyis−2,j +

7

12
uxyis−1,j +

7

12
uxyis,j −

1

12
uxyis+1,j. (3.12)

The coefficients of equation (3.12) were derived by taking the Taylor expansion around xi,j
for each term on the right-hand-side, matching the derivatives with the left-hand-side and
solving a linear system of equations (see Appendix A.3). As a result, the filter’s coefficients
were found to be α3 = α1 = 1

6
and α2 = 4

6
.

Fourth-order first derivative

The fourth-order edge-averaged approximation of the first derivative of the velocity at the
boundary of a momentum cell is obtained by applying a filter with a different set of coeffi-
cients to the cell-averaged velocity field and evaluating the derivative using the second order
central scheme:

∂u

∂x

∣∣∣y
i,j

=
1

∆x

(
Q1u

xy
is,j −Q1u

xy
is−1,j

)
,

hence,

∂u

∂x

∣∣∣y
i,j

=
1

∆x

[
α4u

xy
is−2,j + (−α4 − 2 + α5)uxyis−1,j + (2− α5 + α6)uxyis,j − α6u

xy
is+1,j

]
. (3.13)

Similarly, the filter coefficients are found by matching the terms of (3.13) to the explicit
fourth-order scheme:

∂u

∂x

∣∣∣y
i,j

=
1

12
uxyis−2,j −

5

4
uxyis−1,j +

5

4
uxyis,j −

1

12
uxyis+1,j. (3.14)

Following the same procedure explained in the derivation of (3.12) coefficients, the co-
efficients of (3.14) were derived (see Appendix A.4). Eventually, matching the terms
between (3.13) and (3.14) yields the filter coefficients α4 = α6 = 1

12
and α5 =

5
6
.

3.2.4. Divergence free convective velocities

The property of the convective velocities being divergence-free appears to be of great sig-
nificance to satisfy the condition of conservation of energy [Verstappen and Veldman, 2003].
In their work, they avoided any direct fourth-order approximation of the convective veloci-
ties. Instead, a Richardson extrapolation was used to obtain a fourth order convective flux.
Even though mass and energy conservation are guaranteed on momentum cells, yet this
method requires 7-∆x stencil in each direction for one momentum cell lowering its spatial
resolution properties. On the other hand, [Hokpunna, 2009] proposed a novel fourth-order
divergence free interpolation based on a linear combination of the already divergence free
cell-average values. A fourth-order Lagrange interpolation is used when the convective ve-
locity is aligned with the momentum cell (e.g. approximation of u for u-momentum cell) as
follows:

uyi,j = λi,1u
y
is−2,j + λi,2u

y
is−1,j + λi,3u

y
is,j + λi,4u

y
is+1,j. (3.15)

Finite Volume Discretization of Navier-Stokes on Staggered Grids 21

When the convective velocity is normal to the momentum cell (e.g. approximation of v for
u-momentum cell):

vxis,j = θis,1v
x
i−1,j + θis,2v

x
i,j + θis,3v

x
i+1,j + θis,4v

x
i+2,j. (3.16)

For uniform grid system, the coefficients (λ1−4, θ1−4) are identical and equal to those of a
fourth-order Lagrange interpolation

[
− 1

16
, 9

16
, 9

16
,− 1

16

]
. However, for non-uniform grids the

λ1−4 coefficients were derived as (see Appendix A.5):

λi,1 = −∆xis∆xis−1 (2∆xis + ∆xis+1)

(∆xis−1 + ∆xis−2)AB
,

λi,2 =
∆xis (2∆xis + ∆xis+1) (2∆xis−1 + ∆xis−2)

(∆xis + ∆xis−1) (∆xis−1 + ∆xis−2)C
,

λi,3 =
∆xis−1 (2∆xis + ∆xis+1) (2∆xis−1 + ∆xis−2)

(∆xis + ∆xis−1) (∆xis + ∆xis+1)B
,

λi,4 = −∆xis∆xis−1 (2∆xis−1 + ∆xis−2)

(∆xis + ∆xis+1)AC
,

A = 2∆xis + 2∆xis−1 + ∆xis+1 + ∆xis−2,

B = ∆xis + 2∆xis−1 + ∆xis−2,

C = 2∆xis + ∆xis−1 + ∆xis+1,

and θ1−4 coefficients are defined as [Hokpunna, 2009]:

θis,l =

(
4∑
j=1

λi+1,j −
4∑

j=l+1

λi,j

)
∆xi+l−2

∆xis
.

3.2.5. Convective fluxes with nonlinear correction

The Navier-Stokes equations (2.1) are nonlinear partial differential equations, and the convec-
tive term represents the source of nonlinearity. This term is known to be the main contributor
to the turbulence phenomenon these equations model, where energy is transported nonlin-
early from large to smaller eddies until they reach the dissipation scale. In finite volume
methods, the approximation [ujui] = [uj] [ui] is second-order accurate and, therefore, to ob-
tain higher orders, non-linear correction terms are to be added. [Hokpunna, 2009] proposed
the use of the already computed edge-average convected and convective velocities as they de-
liver better resolution properties. Below is the fourth-order edge-average convective flux on
the right boundary of a u-momentum cell [Hokpunna, 2009]:

[uu]yi+1,j = uyi+1,ju
y
i+1,j +

1

48

(
uyi+1,j+1 − u

y
i+1,j−1

)2
. (3.17)

Three different equations analogous to (3.17) can be obtained to evaluate the convective
fluxes at the left boundary of a u-momentum cell and the top/bottom boundaries of a v-
momentum cell with special care given to indices. On the other hand, the following expression
is written for the convective flux at the top edge of a u-momentum cell and could be used

Finite Volume Discretization of Navier-Stokes on Staggered Grids 22

to write those at the bottom boundary of a u-momentum cell and right/left boundaries of a
v-momentum cell [Hokpunna, 2009]:

[vu]xis,js = vxis,jsu
x
is,js +

1

24

(
uyis+1,js − u

y
is−1,js

) (
vxyi+1,js − v

xy
i,js

)
. (3.18)

3.2.6. Formal fourth-order discrete Laplacian operator

Keeping in mind that the discrete divergence operator is applied over pressure-cells whereas
the discrete gradient operator is applied over momentum-cells. Employing (3.6) and (3.7),
the discrete fourth-order x-component of the Laplacian operator can be written for uniform
grids as (see Appendix A.6 for derivation) [Hokpunna, 2009]:

∂2p

∂x2

∣∣∣xy
i,j

=
pxyi±3,j − 54pxyi±2,j + 783pxyi±1,j − 1460pxyi,j

576 ∆x2
. (3.19)

On non-uniform grids, this component could be derived by considering the non-uniform set
of coefficients in (3.6) and (3.7) when writing the discrete divergence and gradient opera-
tors:

D4x =
eq(3.7)at (is,j) − eq(3.7)at (is−1,j)

xis,j − xis−1

and G4x =
eq(3.6)at (i+1,j) − eq(3.6)at (i,j)

xi+1 − xi
.

Finite Volume Discretization of Navier-Stokes on Staggered Grids 23

3.3. Validation and Numerical Test Cases

When validation is applied to a flow solver, the intention of this process is to justify that the
code is capable of properly solving the governing mathematical equations with the desired
order of accuracy built in the numerical approximations. Therefore, a verified code has very
high chances of being free of implementation errors as well as approximations errors. To test
the order of spatial and time convergence of the discretization schemes introduced in the
previous chapters, a well known benchmark test case is used .

3.3.1. Classical and Convected Taylor-Green vortex test cases

Taylor-Green vortex flow is an unsteady flow describing the decay of a two-dimensional peri-
odic vortex in a square domain. This flow has an exact closed solution of the incompressible
Navier-Stokes equations, the thing which made it serve as a benchmark problem for testing
the order of accuracy of various discretization schemes. The Taylor-Green vortex (TGV)
solution is given by:

u(x, y, t, ν) = c1 − cos(x− c1t)sin(y)e−2νt, (3.20)

v(x, y, t, ν) = c2 + sin(x− c1t)cos(y)e−2νt, (3.21)

p(x, y, t, ν) = −1

4
(cos(2(x− c1t)) + cos(2(y − c2t))) e

−4νt. (3.22)

The computational domain is set to (x, y) ∈ [0, 2π]2 and the flow is initialized using equations
(3.20)-(3.22) with t = 0 as shown Fig.3.2. It is worth mentioning that when testing the
fourth-order implementation, the fields are initialized with and compared against averaged
quantities along each cell.

(a) (b) (c)

Figure 3.2: Fields at t = 0s (a) u-velocity field (b) v-velocity field (c) pressure field

Spatial convergence:
In the classical TGV (with c1 = c2 = 0, Re = 100), only viscous diffusion occurs and
therefore the only accuracy demonstrated will be of the diffusive term. This argument can
be justified when the flow is invscid, where the flow turns to be steady as the convective
and pressure terms will cancel out. This can be shown by comparing the maximum error of
a velocity field (here u-velocity) computed for the invscid TGV by second and fourth-order
schemes. Fig 3.3 shows that both schemes deliver errors nearly at machine precision, hence
the classical TGV is unable to evaluate the accuracy of the convective and pressure terms

Finite Volume Discretization of Navier-Stokes on Staggered Grids 24

and only restricted to that of the diffusive term. Essentially, this represents the reason
behind introducing the convective velocity (c1, c2) to the TGV solution, where the inviscid
convected TGV (with ν = c2 = 0, c1 = 1) is used to test the convergence of the convective
term. To facilitate the convergence study, the measures of error used in this section are the
L2 and the L∞ norms of error defined as:

‖eu‖2 =

√√√√∆x∆y
Nx∑
i=1

Ny∑
j=1

(
ui,j − uexacti,j

)2
, (3.23)

‖eu‖∞ = max|ui,j − uexacti,j |. (3.24)

(a) (b)

Figure 3.3: Maximum error of inviscid TGV in (a) Second-order scheme (b) fourth-order scheme.

Proceeding to the results of the spatial convergence study, setting the viscosity to ν = 2π
100

,
the characteristic length L equal to the size of the computational domain (2π) and the
velocity equal to the maximum velocity recorded in the field, the Reynolds number is then
Re = 100. The solution is marched in time to t = 0.3 with a time step of ∆t = 0.001
and the norms of the error are recorded for each grid refinement step. Fig 3.4 shows the
convergence rates of the second-order scheme and Fig 3.5 shows those of the fourth-order
scheme. Both schemes converges at the intended rate of convergence with higher error
magnitudes recorded for the convected TGV case. Finally, the order of convergence of the
non-uniform grid implementation is shown in Fig 3.6.

Finite Volume Discretization of Navier-Stokes on Staggered Grids 25

(a)

(b)

Figure 3.4: Convergence rates of the second-order scheme for (a) Classic TGV (b) Convected TGV.

Finite Volume Discretization of Navier-Stokes on Staggered Grids 26

(a)

(b)

Figure 3.5: Convergence rates of the fourth-order scheme for (a) Classic TGV (b) Convected TGV.

Finite Volume Discretization of Navier-Stokes on Staggered Grids 27

(a)

(b)

Figure 3.6: Convergence rates of schemes at non-uniform staggered grids. (a) second-order (b)
fourth-order.

Finite Volume Discretization of Navier-Stokes on Staggered Grids 28

Temporal convergence:
As already was mentioned in 2.4, the time integration scheme used to march the solution in
time is the third-order low storage explicit Runge-Kutta (RK3) scheme of [Williamson, 1980].
This scheme is third-order accurate for the velocity and first-order accurate for the pressure.
The difference between the the numerical and the exact analytical solution represents the
error which is essentially composed of two components, namely, the temporal error and
the spatial error. Depending on the size of the time step, it might occur that the latter
exceeds the former significantly and the error becomes independent of the time step size.
Therefore, it is more convenient to eliminate the spatial error when verifying the convergence
of the implemented time integration schemes. One way to do that is to take ratios of
differences between the numerical solution computed for a successively halved time step.
This can be demonstrated by letting ũ∆t be the numerical solutions evaluated by means
of some time step ∆t and a time integration scheme of p-order of accuracy, then we can
write:

ũ∆t = uexact + C∆tp,

ũ∆t/2 = uexact + C

(
∆t

2

)p
,

ũ∆t/4 = uexact + C

(
∆t

4

)p
,

where C is some constant. Now, taking the ratios of differences we get:

ũ∆t − ũ∆t/2

ũ∆t/2 − ũ∆t/4

=
C∆tp − C

(
∆t
2

)p
C
(

∆t
2

)p − C (∆t
4

)p =
1− 2−p

2−p − 2−2p
= 2p.

Then once these ratios are plotted in a logarithmic scale, the rate of convergence is obtained
as shown in Fig 3.7.

Figure 3.7: Temporal convergence test results

4. The Immersed Boundary Method

This chapter is devoted for introducing the Immersed Boundary Method with the direct
continuous forcing approach followed. First the mathematical formulation along the with
essential definitions of variables is presented. Then, the equations describing the fluid-solid
coupling are presented. Next, a derivation of a new fourth-order interpolation function is
explained with a mathematical proof. Finally, numerical test cases are conducted to test the
accuracy of the implemented IB solver.
This chapter contains frequently-used new terms which require to be introduced. This can be
done best by means of the schematic shown in Fig 4.1 along with the following description.
We separately discretize the computational domain Ω with a uniform fixed Cartesian grid
gh, where xi,j are the computational Eulerian nodes. Moreover, we define the immersed
boundary embedded into the fluid by the continuous curve Γ and discretize it with a set
of uniformly distributed points NL. These points are so called Lagrangian force points and
their coordinates are to be used in the interpolation and spreading steps discussed later. The
coordinates of the force points are denoted by:

Xl ∈ Γ ∀ 1 ≤ l ≤ NL,

and from now on, in order to differentiate between the Eulerian quantities evaluated at the
Eulerian points (x) and their Lagrangian counterparts evaluated at the Lagrangian points
(X), we shall use upper case letters for the latter one.

Γ

Ω

Figure 4.1: Eulerian and Lagrangian locations.

29

The Immersed Boundary Method 30

4.1. Mathematical formulation

Although the immersed boundary method is not confined to viscous incompressible flu-
ids, in the scope of this work we will only consider fluids that can be described by
the incompressible NS equations. For convenience, we rewrite the NS equations be-
low:

∂u

∂t
= (u · ∇) u + ν∆u− 1

ρ
∇p+ f

∇ ·u = 0

 x ∈ Ω,

where f is a volume source term that will be used as described in the Continuous forcing
approach, i.e to represent the influence of the solid object on the surrounding fluid. These
equations will be enforced throughout the whole computational domain Ω including the area
occupied by the immersed boundary. The strategy followed here for the formulation of the
fluid-solid interaction force was presented by [Uhlmann, 2005]. In his work, he combined a
direct and explicit forcing method with Peskin’s regularized delta function approach known
for its capability of performing smooth transfer of quantities between the Lagrangian and
Eulerian positions, while at the same time avoiding strong restrictions of the time step.
What follows next is a description of volume forces formulation.

For the purpose of presenting the method adopted, let the time discretization of the NS
equations be given by:

un+1 − un

∆t
= rhsn+1/2 + fn+1/2,

where rhsn+1/2 is a short-hand for the collection of convective, diffusive and pressure terms.
One way to find the force fn+1/2 arising from directly imposing the desired value of the velocity
ud on the boundary is to simply write [Fadlun et al., 2000]:

fn+1/2 =
ud − un

∆t
− rhsn+1/2 (4.1)

Due to the fact that the Eulerian and Lagrangain points do not usually coincide,
[Fadlun et al., 2000] suggested three interpolation procedures with an ascending order of
accuracy when this direct forcing approach is used. The first was to assign the force in (4.1)
to all Eulerian points closest to the immersed boundary as if they were coincident to it. This
resulted in a diffused interface rather than a sharp one. The second interpolation procedure
was an improved version of the first where volume fraction weighting was considered to scale
the forcing applied to the momentum-cells closest to the boundary. The last proposition
was to linearly interpolate the velocity of the immersed boundary ud to the Eulerian points
closest to the boundary to obtain ūd and substitute it in (4.1) instead of ud. However,
[Uhlmann, 2005] reported that the use of this direct forcing approach might cause serious
oscillations of the hydrodynamical forces due to inadequate smoothing. Therefore, we follow
the direct forcing scheme proposed by [Uhlmann, 2005] where the force term is evaluated at
the Lagrangian force points Xl:

Fn+1/2 =
Ud −Un

∆t
−RHSn+1/2 ∀ Xl, (4.2)

The Immersed Boundary Method 31

with Ud being the velocity at the fluid-solid interface. Although this velocity could
be let free to be determined by Newton’s equations for some specific applications, it is
however explicitly prescribed by the rigid body motion of the solid object in the test
cases considered in this work. This velocity is composed of linear and rotational parts
as:

Ud (Xl) = Uc + Wc × (Xl −Xc) , (4.3)

where Uc, Wc and Xc are the linear velocity, angular velocity and the coordinates of the
object’s centroid, respectively.
In (4.2), Un and RHSn+1/2 can both be combined into a single unknown, namely,
the intermediate velocity at a Lagrangian location without adding the force term
F:

U∗ = Un + RHSn+1/2∆t −→ Un = U∗ −RHSn+1/2∆t. (4.4)

Substituting (4.4) into (4.2) yields the following new expression of the Lagrangian
force:

Fn+1/2 =
Ud −U∗

∆t
∀ Xl. (4.5)

To close the required coupling terms , it is worth mentioning that an Eulerian analogue of
(4.4) exists in the projection method 2.4 used in this work. Up to this point, we can con-
clude the mathematical formulation of the problem defining the Eulerian and Lagrangian
variables, and we can proceed with the next task of presenting the interaction equations of
the numerical scheme.

Interaction equations
In order to build a proper communication between the fluid and the solid object, one has to
interpolate the coupling quantities (u∗,U∗,F and f) back and forth between these two phases.
The method used to achieve this task is the original IB method introduced by [Peskin, 1972],
where the idea was built on the use of a bounded continuous approximation δh of a Dirac delta
function δ to link the quantities between the two frames of reference. Restricting ourselves
to the two-dimensional spatial implementation of this work, the interaction equations read
[Uhlmann, 2005]:

U∗(Xl) =
∑
x∈gh

u∗(x)δh (x−Xl)h
2 ∀ 1 ≤ l ≤ NL, (4.6)

f(x) =

NL∑
l=1

F (Xl) δh (x−Xl) ∆Al ∀ x ∈ gh. (4.7)

The operation performed by equation (4.6) takes an Eulerian input u∗(x) and generates a
Lagrangian output U∗(Xl). We shall call this the interpolation operation, owing to the fact
that it computes the Lagrangian quantity as a weighted average of the neighbouring Eulerian
quantities as shown in Fig 4.2a. Alternatively, equation (4.7) takes a Lagrangian input F
and generates an Eulerian output f . This operation is called the spreading operation, where

The Immersed Boundary Method 32

the force is spread out from a Lagrangian force point to the Eulerian points surrounding it
as shown in Fig 4.2b. A detailed presentation of the explicit formulation of the coupling
force within each RK sub-step is shown in Algorithm 2.

u∗(x)

(a)

F(X)

(b)

Figure 4.2: (a) Interpolation of Eulerian velocities. (b) Spreading of a Lagrangian force.

The Immersed Boundary Method 33

Algorithm 2: RK3 time integration with IBM

initialize u, v and p fields
n← 1
while n < number of time steps do

First RK sub-step:

RHS1 ← Fc(un) + Fd(un) + Fp(pn)
un ← un + 1

3
∆t RHS1 // Intermediate velocity 1

U(Xl)←
∑

x∈gh un(x)δh (x−Xl)h
2 ∀ NL // Interpolate velocity

F(Xl)← ρ Ud−U
1
3

∆t
// Evaluate forces

f(x)←
∑NL

l=1 F (Xl) δh (x−Xl) ∆Al ∀ x // Spread forces

un ← un +
1
3

∆t

ρ
f(x) // Intermediate velocity 2

∆dp← ρ
1
3

∆t
∇ ·un // Correct pressure

un ← un −
1
3

∆t

ρ
∇dp // Project fields

pn ← pn +∇dp

Second RK sub-step:

RHS2 ← Fc(un) + Fd(un) + Fp(pn)

RHS2 ← RHS2 − 5
9

RHS1

un ← un + 15
16

∆t RHS2 // Intermediate velocity 1

U(Xl)←
∑

x∈gh un(x)δh (x−Xl)h
2 ∀ NL // Interpolate velocity

F(Xl)← ρ Ud−U
3
4

∆t
// Evaluate forces

f(x)←
∑NL

l=1 F (Xl) δh (x−Xl) ∆Al ∀ x // Spread forces

un ← un +
3
4

∆t

ρ
f(x) // Intermediate velocity 2

∆dp← ρ
3
4

∆t
∇ ·un // Correct pressure

un ← un −
3
4

∆t

ρ
∇dp // Project fields

pn ← pn +∇dp

Third RK sub-step:

RHS1 ← Fc(un) + Fd(un) + Fp(pn)
RHS1 ← RHS1 − 153

128
RHS2

un ← un + 8
15

∆t RHS1 // Intermediate velocity 1

U(Xl)←
∑

x∈gh un(x)δh (x−Xl)h
2 ∀ NL // Interpolate velocity

F(Xl)← ρ Ud−U
∆t

// Evaluate forces

f(x)←
∑NL

l=1 F (Xl) δh (x−Xl) ∆Al ∀ x // Spread forces

un ← un + ∆t
ρ

f(x) // Intermediate velocity 2

∆dp← ρ
∆t
∇ ·un // Correct pressure

un+1 ← un − ∆t
ρ
∇dp // Project fields

pn+1 ← pn +∇dp

n← n+ 1

The Immersed Boundary Method 34

As the regularized delta function δε (that will soon make its appearance) plays a prominent
role in the interaction equations (4.6) and (4.7), its construction should be carried out
carefully as it has a considerable influence on the solution behavior and accuracy. There
exist different regularized delta functions in the literature such as the cosine shape delta by
[Peskin, 1972]:

φ(r) =

{
1
4

(
1 + cos(πr

2
)
)
, if |r| ≤ 2

0, otherwise,
(4.8)

the three-point delta by [Roma et al., 1999]:

φ(r) =

1
3

(
1 +
√
−3r2 + 1

)
, if |r| ≤ 1

2

1
6

(
5− 3r −

√
−3(1− r2 + 1)

)
, if 1

2
≤ |r| ≤ 3

2

0, otherwise,

(4.9)

and the four-point delta by [Peskin, 2002]:

φ(r) =

1
8

(
3− 2r +

√
1 + 4r − 4r2

)
, if |r| ≤ 1

1
8

(
5− 2r −

√
−7 + 12r − 4r2

)
, if 1 ≤ |r| ≤ 2

0, otherwise,

(4.10)

depicted in Fig 4.3. These functions were derived by satisfying a set of discrete compat-
ibility conditions which will be introduced in the next section. Both kernels (4.9) and
(4.10) have a second-order accuracy when used with smooth function fields, hence serve
as a good choice to use in cooperation with the second-order finite volume scheme in sec-
tion 3.1. The remaining task is to seek a regularized delta function capable of interpolat-
ing fields at a fourth-order accuracy and to be used with the higher order implemented
scheme.

Figure 4.3: Regularized delta functions from the literature

The Immersed Boundary Method 35

4.2. Derivation of fourth-order regularized delta-function

This section is devoted for the derivation of a regularized delta function with a fourth-order
accuracy inspired by [Tornberg and Engquist, 2004]. In their work, they showed that one
can design a higher order regularized delta function by satisfying higher discrete moment
conditions. Letting δε be a one-dimensional regularization of the Dirac delta function δ with
a compact support [−ε, ε], and q being the number of moments satisfied, the discrete moment
conditions can be written as:

Mr (δε, X, h) = h
∞∑

j=−∞

δε (xj −X) (xj −X)r =

{
1 if r = 0

0 if 1 ≤ r ≤ q
(4.11)

The zeroth moment (M0) ensures that the integral over δε is unity, and yields the exact
interpolation of constant functions.
In order to show the dependency between the numerical order of accuracy and
the number of moments a regularized delta satisfies, one can write the error as
[Tornberg and Engquist, 2004]:

E =

∣∣∣∣∣h
∞∑

j=−∞

δε (xj −X) f(xj)− f(X)

∣∣∣∣∣ ≤ Chq. (4.12)

In order to be consistent with the fourth-order finite volume scheme implemented in this
work, it is worth mentioning that the interpolated values f(xj) are cell-averaged quantities
and not cell-center point values. On uniform grids, a proof of (4.12) can be carried out by
taking the Taylor series expansion of f(xj) around X:

h
∞∑

j=−∞

δε (xj −X) f(xj) = h
∞∑

j=−∞

δε (xj −X)
1

h

∫ xj+h
2

xj−h
2

f(x) dx, (4.13)

with,

1

h

∫ xj+h
2

xj−h
2

f(x) dx =
1

h

∫ xj+h
2

xj−h
2

f(X) + (x−X)
df

dx

∣∣∣
X

+
(x−X)2

2!

d2f

dx2

∣∣∣
X

+

. . .+
(x−X)q−1

(q − 1)!

d(q−1)f

dx(q−1)

∣∣∣
X

+O(hq) dx. (4.14)

Choosing q = 4 and evaluating the integral up to the (q − 1)th derivative and substituting
that into (4.13) gives:

h

∞∑
j=−∞

δε (xj −X) f(xj) = h

∞∑
j=−∞

δε (xj −X)

[
1︸︷︷︸
ξ0,i

f(X) + (xj −X)︸ ︷︷ ︸
ξ1,i

df

dx

∣∣∣
X

+

(
1

2
(xj −X)2 +

h2

24

)
︸ ︷︷ ︸

ξ2,i

d2f

dx2

∣∣∣
X

+

(
1

6
(xj −X)3 +

h2

24
(xj −X)

)
︸ ︷︷ ︸

ξ3,i

d3f

dx3

∣∣∣
X

]
+O(h4). (4.15)

The Immersed Boundary Method 36

Using the definition of discrete moment conditions (4.11), equation (4.15) can be simplified
to:

h
∞∑

j=−∞

δε (xj −X) f(xj) = M0(δε, X, h)f(X) + M1(δε, X, h)
df

dx

∣∣∣
X

+

M̃2(δε, X, h)
d2f

dx2

∣∣∣
X

+ M̃3(δε, X, h)
d3f

dx3

∣∣∣
X

+ O(h4). (4.16)

Where the moments with tilde are the modified moment conditions originating from the fact
that the quantities interpolated are cell-averaged quantities. One can now see that satisfying
four moment conditions results in a regularized delta with a fourth-order interpolating order
of accuracy. The satisfaction of the first, second and third moment conditions enables the
the regularized delta to exactly interpolate linear, quadratic and cubic smooth functions,
respectively.
Regarding the minimal compact support required to achieve the desired order of accuracy,
[Tornberg and Engquist, 2004] proofed that for δε to be of qth-order, its compact support 2ε
has to be greater than or equal to qh. Seeking an overall fourth-order accuracy as well as
minimal computational effort, the compact support was chosen as 2ε = 4h. This implies
that exactly q Eulerian points are in the support of δε.
The remaining concern is the unique evaluation of the fourth-order δε at these Eulerian
points. Defining the Eulerian points as xj = x1, ..., x4 to be within the 2h neighborhood of
a Lagrangian force point X, and the regularized delta to be:

δε =
1

h
φ(rj =

xj −X
h

),

where φ is a continuous function. One can find φ(r) by solving the following linear system
of equations:

ΞΦ = c, (4.17)

where each term is written as:
1 1 1 1
ξ1,1 ξ1,2 ξ1,3 ξ1,4

ξ2,1 ξ2,2 ξ2,3 ξ2,4

ξ3,1 ξ3,2 ξ3,3 ξ3,4

︸ ︷︷ ︸

Ξ

φ(r1)
φ(r2)
φ(r3)
φ(r4)

︸ ︷︷ ︸

Φ

=

1
0
0
0

︸︷︷︸

c

.

The linear system of equations (4.17) gives access to all points of the kernel φ(r) and one
could fit a curve to derive its expression. It was observed in figure 3.2a that φ is symmetric
(φ(−r) = φ(r)) and has a discontinuous derivative at r = 1. Based on these two observations
and upon the evaluation of derivatives and y-intercepts, φ(r) shown in figure 3.2b was found
to be a cubic piece-wise function written as:

φ(r) =

13
12
− 5

8
r − r2 + 1

2
r3, if |r| ≤ 1

11
12
− 43

24
r + r2 − 1

6
r3, if 1 ≤ |r| ≤ 2

0, otherwise

(4.18)

The Immersed Boundary Method 37

(a) (b)

Figure 4.4: (a) Multiple evaluations of the linear system of equations (4.17). (b) Derived regular-
ized delta function with modified moment conditions.

We can now summarize the set of conditions satisfied by the regularized delta function and
their influence on its properties:

1. φ(r) is continuous : this ensures that the coefficients of interpolation and spreading

vary continuously, thus no jumps in velocities or forces can take place.

2. φ(r) = 0 ∀ |r| ≥ 2 : i.e the delta function must be of a finite support. This condition

is introduced to keep the computations of the IBM reasonable, whereas the use of
unbounded functions will entail a prohibitive computational cost since each Lagrangian
force point will interact with Eulerian grid points.

3.
∑∞

i=−∞ φ(r − i) = 1 ∀ r : this condition guarantees the exact interpolation of constant

functions with the physical implication that the total force added to the fluid is not
amplified or damped spuriously in the transfer step. This can be shown by:

∑
x∈gh

f(x)h2 =
∑
x∈gh

NL∑
l=1

F (Xl) δh (x−Xl) ∆Alh
2,

∑
x∈gh

f(x)h2 =

NL∑
l=1

F (Xl) ∆Al
��

���
���

��:1∑
x∈gh

δh (x−Xl)h
2 =

NL∑
l=1

F (Xl) ∆Al

4.
∑∞

i=−∞(r − i)φ(r − i) = 0 ∀ r : this condition ensures the exact interpolation of linear

functions, with the interpretation of conserving the torque during the transfer step. A
similar proof of that in condition 3 can be showed by:

The Immersed Boundary Method 38

∑
x∈gh

x× f(x)h2 =
∑
x∈gh

NL∑
l=1

x× F (Xl) δh (x−Xl) ∆Alh
2,

∑
x∈gh

x× f(x)h2 =

NL∑
l=1 ��

���
���

���
��:X(∑

x∈gh

xδh (x−Xl)h
2

)
× F (Xl) ∆Al =

NL∑
l=1

X× F (Xl) ∆Al

5. M̃2(φ) = 0 ∀ r : which guarantees that quadratic functions are interpolated exactly.

6. M̃3(φ) = 0 ∀ r : this condition ensures the exact interpolation of cubic functions.

Fig 4.5 shows the derived delta function in its two-dimensional shape.

(a)

(b)

Figure 4.5: Two-dimensional Regularized delta function.

The Immersed Boundary Method 39

4.3. Integration of IB solver with the fourth order uniform
FV code

The flow chart depicted below demonstrates the point where the IB solver is merged into
flow solver. In addition, the flow of the numerical steps is sorted for each solver along with
the associated equations.

Initialize fields at tn = 0

Solve flow at t = tn

Evaluate the right hand side
of the NS equations (rhs)

Evaluate the interme-
diate velocity (u∗) at
the Eulerian positions
using equation (2.16)

IBM solver

Interpolate intermedi-
ate velocity u∗ from the
staggered Eulerian grid
to the Lagrangian force
points to obtain (U∗)
using equation (4.6)

Evaluate the force F at
the Lagrangian positions

using equation (4.5)

Spread Lagrangian forces
to Eulerian grid to obtain

f using equation (4.7)

Evaluate intermediate
velocity u∗∗ at Eulerian po-
sitions after force spreading

Correct pressure by
solving the pressure

Poisson equation (2.18)

Project fields us-
ing equation (2.19)

Arrive at final
RK sub-step?

Arrive at
final time?

End

k = k + 1

tn = t+ ∆t

No

Yes

No
Yes

The Immersed Boundary Method 40

4.4. Numerical Tests

In the numerical tests considered in this work, the embedded boundary has a prescribed
velocity (4.3). In addition, only two-dimensional flows are examined and this can be, of
course, extended to three spatial dimensions.

4.4.1. Taylor-Green vortex with an embedded circle

The Taylor-Green vortex flow was introduced in 3.3.1. In addition to its use in validating
flow solvers, this smooth flow serves as a good test for the order of accuracy of the proposed
regularized delta function (4.18). In order to do that, a circular sub-domain of radius r = 2 is
embedded within the square computational domain Ω = [0, 2π]2. Fig 4.6 shows a schematic
of the test setup.

0 1 2 3 4 5 6
x

0

1

2

3

4

5

6

y

Figure 4.6: Embedded circle in the square computational domain.

Geometrical definitions:
In practice, the number of the Lagrangian force points NL evenly distributed along the
immersed boundary is chosen such that the area occupied by a Lagrangian element is equiv-
alent to that of a finite volume of the Eulerian grid (i.e ∆Al = ∆x ∆y). Further increase
of NL does not lead to any significant improvement of the results [Uhlmann, 2005]. Like
[Uhlmann, 2004] and [Uhlmann, 2005], the Lagrangian elements of the embedded circle (with
radius rc) are equi-partitioned sectors of an annulus with inner and outer radii (rin, rout)
having the Lagrangian points located at their centers. With the radial length of the element
being equal to the mesh size:

∆x = rout − rin,

The Immersed Boundary Method 41

and the arc-length at the actual radius of the immersed boundary rc:

s =
2π

NL

rc,

the area of a Lagrangian element is therefore:

∆Al = ∆x s =
2πrc∆x

NL

.

Taking ∆Al = ∆x∆y andNx = Ny, the number of Lagrangian points is hence:

NL ≈
2π

rc
.

Spatial convergence:
We set the characteristic length of the problem to D = 4 and tune the kinematic viscosity
to ν = 0.04 to result in a Reynolds number of Re = 100. The exact solution (3.20)-(3.22)
initializes the fields and provides the time-dependent desired velocity Ud at the Lagrangian
force points Xl of the immersed circle. The maximum error of the velocity inside the im-
mersed boundary is recorded for successive grid refinements at the end of the simulation
time t = 0.1 where the equations are advanced with a time step of ∆t = 0.0005. Fig 4.7
confirms the accuracy of the interpolation of the derived delta function as it demonstrates
the fourth-order rate of convergence achieved.

Figure 4.7: Rate of convergence of the L∞ of the error.

A spatial distribution of error of the u-velocity field is depicted in Fig 4.8 for Nx = Ny = 128.
Although it is clear that the larger error committed throughout the computational domain
is in the layer surrounding the immersed circle, its magnitude is still very small. To verify
the satisfaction of the no-slip condition at the Lagrangian force points, we interpolate the
velocity field from the Eulerian points to each Lagrangian point at the end of the simulation

The Immersed Boundary Method 42

and compare these values against the analytical solution. Fig 4.9 shows the convergence of
the maximum error. Although the error is continuously decreasing, the rate of convergence is
not the expected fourth-order. A probable cause of this result is the projection step following
the IBM solver.

Figure 4.8: Spatial distribution of the error throughout the computational domain.

Figure 4.9: Rate of convergence of no-slip condition L∞ norm.

We proceed to evaluate another important result, namely, the dependency of the error upon
the position of the immersed boundary with respect to the Eulerian grid. This property can
be tested by simulating the setup for several times with a fixed grid spacing (here with h =

The Immersed Boundary Method 43

0.05) and applying horizontal shifts to the center of the embedded circle at the beginning of
each simulation. A total of 50 numerical simulations were conducted, in each simulation the
x-coordinate of the circle was updated as xcircle = xcircle+ ∆x

50
. Fig 4.10 depicts the maximum

error with respect to fractions of mesh width where it can be clearly seen that error is not
sensitive to the relative position of the immersed boundary.

Figure 4.10: Translation invariance of the derived regularized delta function

Similar results were also evaluated for the second-order finite volume implementation with
the regularized delta function of [Peskin, 2002]. The order of accuracy for the maximum
norm of the error recorded inside the embedded circle and that of the no-slip condition is
depicted in Fig 4.11a and Fig 4.11b, respectively.

(a) (b)

Figure 4.11: (a) Embedded circle in the square computational domain. (b) Rate of convergence
of no-slip condition L∞ norm.

The Immersed Boundary Method 44

Fig 4.12a shows the spatial distribution of the error and Fig 4.12b confirms the low sensitivity
of results to the relative position of the immersed boundary.

(a) (b)

Figure 4.12: Using the regularized delta by [Peskin, 2002]. (a) The spatial distribution of the error
throughout the computational domain. (b) Translation invariance.

Temporal convergence:
A temporal convergence study has been conducted to check the influence of the immersed
boundary on the accuracy of the time integration scheme. Fig 4.13 depicts the rate of
convergence of the u-velocity and pressure fields. It can be observed that the first-order
convergence of the pressure is maintained. However, the third-order convergence of velocity
is lost and an alternating rate of ≈ 1 is obtained instead. The investigation of this effect
was outside the scope of this work.

Figure 4.13: IBM temporal convergence test results.

The Immersed Boundary Method 45

4.4.2. Oscillating channel flow

This test case is taken from [Schlichting et al., 2017] and the objective is to verify the con-
vergence of the method in non-smooth velocity fields. An oscillating channel flow is an
unsteady internal flow occurring when the fluid is acted on by a periodic pressure gradient.
This pulsatile flow can be realized by blood flow in vascular system, or the periodic move-
ment of a piston against a fluid in a channel. Assuming an infinitely long channel along the
x-axis, the flow becomes independent of the coordinate x and hence any velocity derivative
with respect to x will vanish. We let D be the diameter of the channel and given the no-slip
boundary conditions u(y = ± D

2
) = v(y = ± D

2
) = 0, the NS equations are simplified to the

linear equation:

∂u

∂t
= −1

ρ

∂p

∂x
+ ν

∂2u

∂y2
. (4.19)

We impose a harmonic pressure gradient to the u-momentum equation:

−1

ρ

∂p

∂x
= sin(nt) = −i ei(nt),

where i is the imaginary unit. The solution of the differential equation (4.19) in a complex
notation is then [Schlichting et al., 2017]:

u(y, t) = − 1

n
ei(nt)

[
1−

cosh(y
√

in/ν)

cosh((h/2)
√

in/ν)

]
, (4.20)

where only the real part has the physical significance. The pulsatile flow velocity profile
changes its shape based on the frequency of the imposed pressure gradient. A dimen-
sionless expression relating the frequency n to the viscous effects is given by Womersley
number:

Wr =

√
nL2

ν
, (4.21)

where L is the characteristic length scale taken as the radius of the channel. In the setup
of this case, we define the boundaries of the channel by means of two immersed bound-
aries as shown in Fig 4.14. We initialize the domain confined by the immersed bound-
aries with the exact solution (4.20) by setting the kinematic viscosity to ν = 0.2, the
frequency n = 20 and the diameter of the channel D = 1. Given the aforementioned
parameters and the characteristic length L = D

2
= 0.5, the Womersley number is evaluated

Wr = 5.
We perform simulations for varying ∆y with a fine time step of ∆t = 0.00005 and compare
the results to the exact solution at t = 1

8
T ≈ 0.04, where T is the time period of the periodic

pressure gradient defined as T = 2π
n

.
Convergence study results for the maximum error inside the channel are shown for the second
and fourth-order implementations in Fig 4.15. While the rate of convergence of the former
is reduced from 2 to 1, that of the latter went down from 4 to ≈ 1.3 with a lower order
of magnitude recorded for all convergence steps. One can clearly see the drop in the order

The Immersed Boundary Method 46

Figure 4.14: Immersed boundaries representing the boundaries of the channel.

of convergence caused when using the regularized delta functions with non-smooth velocity
fields. In this problem, the velocity field has a kink at the immersed boundaries and it
is only C0 continuous. An interpretation of this behavior is regarded to the assumptions
made when the regularized delta is derived. The existence of higher order derivatives at the
Lagrangian points was an obligation for the derivation in section 4.2 to hold. Therefore,
the delta functions can no longer maintain the order of accuracy they were designed to
achieve.

Figure 4.15: Rate of convergence of the maximum error for the second and fourth-order imple-
mentations.

The Immersed Boundary Method 47

Fig 4.16 depicts the spatial distribution of error throughout the computational domain of
both implementations. As expected, high values of error are committed in the neighborhood
where the no-slip condition is imposed.

(a)

(b)

Figure 4.16: Spatial distribution of error for: (a) Second-order code, (b) Fourth-order code.

The Immersed Boundary Method 48

4.4.3. Stokes first problem

The solution of Stokes first problem (also known as Rayleigh problem) defines the
velocity profile of a semi-infinite layer of an initially quiescent incompressible fluid
caused by an impulsive movement of an infinitely long stationary plate beneath it (Fig
4.17).

u(y, t)

y

uwall

x

Figure 4.17: Stokes first problem

The simplifications associated with this problem are:

∂u

∂x
=
∂p

∂x
= v = 0,

and the u-momentum equation reduces to:

∂u

∂t
= ν

∂2u

∂y2
.

The boundary and the initial conditions are defined as:

u(y, t = 0) = 0, u(y = 0, t > 0) = U0, u(y →∞, t) = 0,

and the exact solution of the problem reads:

u(y, t) = U0 erfc(η), (4.22)

where erfc is the complimentary error function and η is the dimensionless similarity variable.
To simulate this problem, we place an immersed boundary in the middle of the computational
domain as shown Fig 4.18 and assign the velocity Uo = 0.5 to it. We set the kinematic
viscosity to ν = 1 and initialize the problem with a zero-velocity field as the fluid is initially
at rest. We perform multiple simulations with an increasing spatial resolution and evaluate
the error with respect to the exact solution (4.22) at time t = 0.05 with a time step of
∆t = 0.00005. The influence of delta function regularization on the rate of convergence
is depicted in Fig 4.19. A rate of convergence of ≈ 0.8 is measured when using the delta
function by [Peskin, 2002] and a first order convergence is recorded for the derived delta
function.

The Immersed Boundary Method 49

0 0.2 0.4 0.6 0.8 1
x

0

1

2

3

4

5

6

7

8

9

10

y

Figure 4.18: Immersed boundary representing the moving wall

Figure 4.19: Rate of convergence of the maximum error for the second and fourth-order imple-
mentations.

The Immersed Boundary Method 50

Fig 4.20 depicts the spatial distribution of error for this test case. Higher values are, of course,
recorded in the vicinity of the moving immersed boundary.

(a)

(b)

Figure 4.20: Spatial distribution of error for: (a) Second-order code, (b) Fourth-order code.

5. Conclusion and Outlook

We summarize the main points covered in this thesis along with the concluding remarks as
follows. First, general theoretical concepts behind this work were introduced in detail. These
concepts included the Navier-Stokes equations we intended to solve, the indicial notation
providing important grid related definitions, definition of flux terms in the semi-discretized
equations, time advancement scheme with the associated projection method and a brief in-
troduction to the immersed boundary method.
Next, second-order and fourth-order finite volume discretizations of the Navier-Stokes equa-
tions (NSE) tailored specially for staggered grids were presented. For each case, discretiza-
tions were performed on uniform as well as non-uniform structured grids. We initially stated
the simple second-order discretization scheme of the convective, diffusive and pressure fluxes
on uniform grids. For non-uniform grids, we performed a spatial discretization method
which preserves the symmetries of the convective (skew-symmetric) and diffusive (symmet-
ric positive-definite) operators [Verstappen and Veldman, 2003]. Some approximations of
terms (e.g first derivative) had only a first-order local truncation error. However, it was
shown that the concept does not strive for a minimal local truncation error and carries out
discretizations on physical grounds and still achieves the second-order rate of convergence.
This interesting concept results a semi-discrete representation of conservation of mass, mo-
mentum and energy (in the absence of viscous effects).
Then, fourth-order discretization concepts mainly discussed by [Hokpunna, 2009] were pre-
sented. First, an explicit distinction was made between cell-averaged, edge-averaged and
point-wise centered quantities, as these values are only allowed to interchange in the second-
order context. Various numerical techniques approximating each term in the NS equations
were described. Cell-centered deconvolution approximating an edge-averaged quantity at cell
centroid was used on: 1) momentum cells to compute mass fluxes across pressure cells and 2)
pressure cells to find pressure gradients across momentum cells. Instead of using fourth-order
compact schemes of [Kobayashi, 1999], we opted to use a pre-processing step prior to apply-
ing the second-order operators to evaluate the convected velocities and their first derivatives
at the boundaries of the momentum cells [Schwertfirm et al., 2008]. This pre-processing step
improves resolution characteristics of numerical operations and increases their order of trun-
cation error. In addition to being easy to implement, the applied filter functions work on
small, compact stencils, so no grid-boundaries problems arise. To interpolate the convective
velocities to momentum cell boundaries in a divergence-free manner (necessary condition for
energy conservation), the novel approach developed by [Hokpunna, 2009] was used. Fourth-
order approximation of convective fluxes is then ensured by the addition of a non-linear
correction term. Finally, we closed the presentation of the second and fourth-order schemes
by a derivation of a formal second-order and fourth-order discrete Laplace operators. Within
the framework of consistent projection method, we were obliged to solve the latter one to
achieve a fourth-order rate of convergence. Numerical tests were performed for classical and
convected Taylor-Green vortex flow to check the accuracy of each solver. Flow fields of the

51

Conclusion and Outlook 52

second-order solver converge at second-order for both uniform and non-uniform grids, where
its fourth-order counterpart converge at fourth-order. Temporal convergence study of both
solvers proves the third-order convergence of velocity and the first-order convergence of pres-
sure. Of course, a room for improvement exists for the above-mentioned fluid solvers. The
main improvement would be the proper implementation of boundary closure for Dirichlet
and Neumann boundary conditions. Then, one can be more flexible with the choice of test
casesser.
Upon the validation of the implemented schemes, we extended our scope to cover the im-
mersed boundary method with a direct continuous approach by [Uhlmann, 2005]. We pre-
sented the mathematical formulation of the problem with a clear distinction made between
quantities evaluated at Eulerian (fluid) positions and others evaluated at Lagrangian (solid)
positions. As in the original continuous IB method by [Peskin, 1972], an approximation of
the Dirac delta function is used to link the two types of variables. As the main theme of
this thesis was the spatial accuracy of the numerical schemes, we stated some regularized
delta functions from the literature (such that of [Roma et al., 1999] and [Peskin, 2002]) ca-
pable of interpolating quantities at second-order. To derive a fourth-order regularized delta
function, we presented a theorem relating the order of truncation error of a delta function
to the number of discrete moment conditions it satisfies [Tornberg and Engquist, 2004]. We
adapted the proof of this theorem to fit the use of cell-averaged velocities. This resulted in
a set of four modified moment conditions that needed to be satisfied. Upon the appropriate
selection of delta function support, a unique expression could be derived. Finally, second
and fourth order immersed boundary solvers were properly integrated with the respective
above-mentioned fluid solvers.
Numerical testing stage of the immersed boundary implementation confirmed the fourth-
order accuracy of the derived regularized delta function. However, this rate of convergence
was only restricted to cases where the interpolated function fields were smooth at the im-
mersed boundary. It was observed that the fourth-order of convergence drops to first-order
when there was a kink of the velocity field at the immersed boundary. At first sight, this
seemed like a flaw in theory or in the implementation. Yet, once a closer look was given to
the derivation of the delta function, we realized that we have made an assumption in order
for this derivation to hold. The assumption was in the Taylor expansion in equation (4.14),
where we assumed that all derivatives exist up to the third order. In the case of non-smooth
fields, the velocity field has a C0 continuity across the immersed boundary, hence we can’t
achieve a fourth-order rate of convergence with the derived delta function. We suggest a
remedy for this problem by adding a set of one-sided discrete moment conditions described
in [Beyer and Leveque, 1992] to the rows of the linear system of equations (4.17) and seek a
new delta function accordingly. The IB solver presented in this work was limited to uniform
Cartesian grids. A possible suggestion for future work would also be to extend its capabili-
ties to account for non-uniform grid systems while maintaining the order of the underlying
spatial discretizations. The reader is encouraged to read the work of [Pinelli et al., 2010]
treating this matter with a second-order rate of convergence. This extension would signif-
icantly improve the accuracy of results obtained by this method, and of course, at a lower
computational cost.

Bibliography

[Batchelor, 2000] Batchelor, G. K. (2000). An Introduction to Fluid Dynamics. Cambridge
Mathematical Library. Cambridge University Press.

[Battista et al., 2018] Battista, N. A., Strickland, W. C., Barrett, A., and Miller, L. A.
(2018). IB2d Reloaded: A more powerful Python and MATLAB implementation of the
immersed boundary method. Mathematical Methods in the Applied Sciences, 41(18):8455–
8480.

[Beyer and Leveque, 1992] Beyer, R. P. and Leveque, R. J. (1992). Analysis of a one-
dimensional model for the immersed boundary method. SIAM Journal on Numerical
Analysis, 29(2):332–364.

[Chorin, 1967] Chorin, A. J. (1967). The numerical solution of the navier-stokes equations
for an incompressible fluid. Bull. Amer. Math. Soc., 73(6):928–931.

[Donea et al., 2004] Donea, J., Huerta, A., Ponthot, J.-P., and Rodŕıguez-Ferran, A. (2004).
Arbitrary Lagrangian–Eulerian Methods, chapter 14. American Cancer Society.

[Fadlun et al., 2000] Fadlun, E., Verzicco, R., Orlandi, P., and Mohd-Yusof, J. (2000). Com-
bined immersed-boundary finite-difference methods for three-dimensional complex flow
simulations. Journal of Computational Physics, 161(1):35 – 60.

[Ferziger and Peric, 2001] Ferziger, J. and Peric, M. (2001). Computational Methods for
Fluid Dynamics. Springer Berlin Heidelberg.

[Goldstein et al., 1993] Goldstein, D., Handler, R., and Sirovich, L. (1993). Modeling a
no-slip flow boundary with an external force field. Journal of Computational Physics,
105(2):354 – 366.

[Harlow and Welch, 1965] Harlow, F. H. and Welch, J. E. (1965). Numerical Calculation
of Time-Dependent Viscous Incompressible Flow of Fluid with Free Surface. Physics of
Fluids, 8(12):2182–2189.

[Hokpunna, 2009] Hokpunna, A. (2009). Compact fourth-order scheme for numerical simu-
lations of Navier-Stokes Equations. PhD thesis, Technical University of Munich, Munich.

[Kobayashi, 1999] Kobayashi, M. H. (1999). On a class of padé finite volume methods.
Journal of Computational Physics, 156(1):137 – 180.

[Lai and Peskin, 2000] Lai, M.-C. and Peskin, C. S. (2000). An immersed boundary method
with formal second-order accuracy and reduced numerical viscosity. Journal of Computa-
tional Physics, 160(2):705 – 719.

53

Conclusion and Outlook 54

[Manteuffel and White, 1986] Manteuffel, T. A. and White, A. B. (1986). The numerical
solution of second-order boundary value problems on nonuniform meshes. Mathematics
of Computation, 47(176):511–535.

[Mittal and Iaccarino, 2005] Mittal, R. and Iaccarino, G. (2005). Immersed boundary meth-
ods. Annual Review of Fluid Mechanics, 37(1):239–261.

[Peller, 2010] Peller, N. (2010). Numerische Simulation turbulenter Strömungen mit Im-
mersed Boundaries. Dissertation, Technische Universität München, München.

[Pereira et al., 2001] Pereira, J., Kobayashi, M., and Pereira, J. (2001). A fourth-order-
accurate finite volume compact method for the incompressible navier–stokes solutions.
Journal of Computational Physics, 167(1):217 – 243.

[Peskin, 1972] Peskin, C. (1972). Flow Patterns Around Heart Valves: A Digital Computer
Method for Solving the Equations of Motion. PhD thesis, Albert Einstein College of
Medicine of Yeshiva University.

[Peskin, 1977] Peskin, C. S. (1977). Numerical analysis of blood flow in the heart. Journal
of Computational Physics, 25(3):220 – 252.

[Peskin, 2002] Peskin, C. S. (2002). The immersed boundary method. Acta Numerica,
11:479–517.

[Pinelli et al., 2010] Pinelli, A., Naqavi, I., Piomelli, U., and Favier, J. (2010). Immersed-
boundary methods for general finite-difference and finite-volume navier–stokes solvers.
Journal of Computational Physics, 229:9073–9091.

[Roma et al., 1999] Roma, A. M., Peskin, C. S., and Berger, M. J. (1999). An adaptive
version of the immersed boundary method. Journal of Computational Physics, 153(2):509
– 534.

[Runborg, 2012] Runborg, O. (2012). Lecture notes on verifying numerical convergence
rates.

[Schlichting et al., 2017] Schlichting, H., Gersten, K., Krause, E., and Oertel, H. (2017).
Boundary-layer theory. Springer.

[Schwertfirm et al., 2008] Schwertfirm, F., Mathew, J., and Manhart, M. (2008). Improving
spatial resolution characteristics of finite difference and finite volume schemes by approx-
imate deconvolution pre-processing. Computers and Fluids, 37(9):1092 – 1102.

[Stolz and Adams, 1999] Stolz, S. and Adams, N. A. (1999). An approximate deconvolution
procedure for large-eddy simulation. Physics of Fluids, 11(7):1699–1701.

[Tornberg and Engquist, 2004] Tornberg, A.-K. and Engquist, B. (2004). Numerical approx-
imations of singular source terms in differential equations. J. Comput. Phys., 200(2):462–
488.

[Uhlmann, 2004] Uhlmann, M. (2004). New results on the simulation of particulate flows.
Technical Report 1038, CIEMAT, Madrid, Spain.

Bibliography 55

[Uhlmann, 2005] Uhlmann, M. (2005). An immersed boundary method with direct forcing
for the simulation of particulate flows. Journal of Computational Physics, 209(2):448–476.

[Verstappen and Veldman, 2003] Verstappen, R. and Veldman, A. (2003). Symmetry-
preserving discretization of turbulent flow. Journal of Computational Physics, 187(1):343
– 368.

[Williamson, 1980] Williamson, J. (1980). Low-storage runge-kutta schemes. Journal of
Computational Physics, 35(1):48 – 56.

A. Appendix

A.1. Cell-centered deconvolution of velocity on
non-uniform grids

The Cell-centered deconvolution of a u-momentum cell approximating the egde-averaged ve-
locity at the center of the u-momentum cell from the cell-averaged velocities reads:

uyis,j = β1u
xy
is−1,j + β2u

xy
is,j + β3u

xy
is+1,j. (A.1)

To find the coefficients, we take the Taylor expansion of each term on the right hand side
around xis:

uxyis−1,j =
1

∆xis−1

∫ xis−
∆xis

2

xis−
∆xis

2
−∆xis−1

uy dx

≈ 1

∆xis−1

∫ xis−
∆xis

2

xis−
∆xis

2
−∆xis−1

uyis,j + (x− xis)
du

dx

∣∣∣y
is,j

+
(x− xis)2

2!

d2u

dx2

∣∣∣y
is,j

dx

≈ 1

∆xis−1

[
uyis,jx+

(x− xis)2

2

du

dx

∣∣∣y
is,j

+
(x− xis)3

6

d2u

dx2

∣∣∣y
is,j

]∣∣∣∣∣
xis−

∆xis
2

xis−
∆xis

2
−∆xis−1

Similarly, for uis,j and uis+1,j momentum cells we write:

uxyis,j ≈
1

∆xis

[
uyis,jx+

(x− xis)2

2

du

dx

∣∣∣y
is,j

+
(x− xis)3

6

d2u

dx2

∣∣∣y
is,j

]∣∣∣∣∣
xis+

∆xis
2

xis−
∆xis

2

,

uxyis+1,j ≈
1

∆xis+1

[
uyis,jx+

(x− xis)2

2

du

dx

∣∣∣y
is,j

+
(x− xis)3

6

d2u

dx2

∣∣∣y
is,j

]∣∣∣∣∣
xis+

∆xis
2

+∆xis+1

xis+
∆xis

2

.

Upon substituting the limits of the integral, we write:

uxyis−1,j = uyis,j −
(

∆xis + ∆xis−1

2

)
du

dx

∣∣∣y
is,j

+

(
∆x2

is

8
+

∆xis∆is−1

4
+

∆x2
is−1

6

)
d2u

dx2

∣∣∣y
is,j
,

uyis,j = uyis,j +
∆xis,j

24

d2u

dx2

∣∣∣
is,j
,

uxyis+1,j = uyis,j +

(
∆xis+1 + ∆xis

2

)
du

dx

∣∣∣y
is,j

+

(
∆x2

is

8
+

∆xis∆is+1

4
+

∆x2
is+1

6

)
d2u

dx2

∣∣∣y
is,j
.

56

Appendix 57

Now, we can construct the linear system of equations to solve for the coefficients:
1 1 1

−∆xis −∆xis−1 0 ∆xis+1 + ∆xis

3∆x2
is + 6∆xis∆is−1 + 4∆x2

is−1 ∆xis,j 3∆x2
is + 6∆xis∆is+1 + 4∆x2

is+1

β1

β2

β3

 =

1

0

0

A.2. Cell-centered deconvolution of pressure on

non-uniform grids

The cell-centered deconvolution for the pressure approximates the edge-averaged pres-
sure at the pressure grid points position and it is given by the following for-
mula:

pyi,j = β4p
xy
i−1,j + β5p

xy
i,j + β6p

xy
i+1,j. (A.2)

The coefficients are found by expanding the right hand side around xi :

pxyi−1,j ≈
1

∆xi−1

[
pyi,jx+

(x− xi)2

2

dp

dx

∣∣∣y
i,j

+
(x− xi)3

6

d2p

dx2

∣∣∣y
i,j

]∣∣∣∣∣
xi−

∆xis−1
2

xi−∆xis−1−
∆xis−2

2

,

pxyi,j ≈
1

∆xi

[
pyi,jx+

(x− xi)2

2

dp

dx

∣∣∣y
i,j

+
(x− xi)3

6

d2p

dx2

∣∣∣y
i,j

]∣∣∣∣∣
xi+

∆xis
2

xi−
∆xis−1

2

,

pxyi+1,j ≈
1

∆xi+1

[
pyi,jx+

(x− xi)2

2

dp

dx

∣∣∣y
i,j

+
(x− xi)3

6

d2p

dx2

∣∣∣y
i,j

]∣∣∣∣∣
xi+∆xis+

∆xis+1
2

xi+
∆xis

2

.

Substituting the limits of the integrals and the definition of pressure cell spacing introduced
in equation (2.5) yields:

pxyi−1,j = pyi,j −
(

3∆xis−1 + ∆xis−2

4

)
dp

dx

∣∣∣y
i,j

+

(
7∆x2

is−1 + 5∆xis−1∆xis−2 + ∆x2
is−2

24

)
d2p

dx2

∣∣∣y
i,j
,

pxyi,j = pyi,j +

(
∆xis −∆xis−1

4

)
dp

dx

∣∣∣y
i,j

+

(
∆x2

is −∆xis∆xis−1 + ∆x2
is−1

24

)
d2p

dx2

∣∣∣y
i,j
,

pxyi+1,j = pyi,j +

(
3∆xis + ∆xis+1

4

)
dp

dx

∣∣∣y
i,j

+

(
7∆x2

is + 5∆xis∆xis+1 + ∆x2
is+1

24

)
d2p

dx2

∣∣∣y
i,j
.

The corresponding linear system of equations solving for the coefficients is then:

1 1 1

−3∆xis−1 −∆xis−2 ∆xis −∆xis−1 3∆xis + ∆xis+1

7∆x2
is−1 + 5∆xis−1∆xis−2 + ∆x2

is−2 ∆x2
is −∆xis∆xis−1 + ∆x2

is−1 7∆x2
is + 5∆xis∆xis+1 + ∆x2

is+1

β4

β5

β6

 =

1

0

0

Appendix 58

A.3. Fourth-order explicit scheme for convected velocity

The explicit fourth-order scheme evaluating the transported velocity at the left edge of a
u-momentum cell reads:

uyi,j = φ1u
xy
is−2,j + φ2u

xy
is−1,j + φ3u

xy
is,j + φ4u

xy
is+1,j. (A.3)

Expanding each term on the right hand side around xi with k = −2,−1, 0, 1 we ob-
tain:

uxyis+k,j =
1

∆x

∫ xi+(k+1)∆x

xi+k∆x

uydx

≈ 1

∆x

∫ xi+(k+1)∆x

xi+k∆x

uyi,j + (x− xi)
du

dx

∣∣∣y
i,j

+
(x− xi)2

2!

d2u

dx2

∣∣∣y
i,j

+
(x− xi)3

3!

d3u

dx3

∣∣∣y
i,j

+

O(∆x4) dx

≈ 1

∆x

[
uyi,jx+

(x− xi)2

2

du

dx

∣∣∣y
i,j

+
(x− xi)3

6

d2u

dx2

∣∣∣y
i,j

+
(x− xi)4

24

d3u

dx3

∣∣∣y
i,j

]∣∣∣∣∣
xi+(k+1)∆x

xi+k∆x

.

Substituting the limits of the integral for each cell we get:

uxyis−2 = uyi,j −
3∆x

2

du

dx

∣∣∣y
i,j

+
7∆x2

6

d2u

dx2

∣∣∣y
i,j
− 15∆x3

24

d3u

dx3

∣∣∣y
i,j
,

uxyis−1 = uyi,j −
∆x

2

du

dx

∣∣∣y
i,j

+
∆x2

6

d2u

dx2

∣∣∣y
i,j
− ∆x3

24

d3u

dx3

∣∣∣y
i,j
,

uxyis = uyi,j +
∆x

2

du

dx

∣∣∣y
i,j

+
∆x2

6

d2u

dx2

∣∣∣y
i,j

+
∆x3

24

d3u

dx3

∣∣∣y
i,j
,

uxyis+1 = uyi,j +
3∆x

2

du

dx

∣∣∣y
i,j

+
7∆x2

6

d2u

dx2

∣∣∣y
i,j

+
15∆x3

24

d3u

dx3

∣∣∣y
i,j
.

Solving the following linear system of equations yields the coefficients of equation

1 1 1 1

−3∆x −∆x ∆x 3∆x

7∆x2 ∆x2 ∆x2 7∆x2

−15∆x3 −∆x3 ∆x3 15∆x3

φ1

φ2

φ3

φ4

 =

1

0

0

0

→

φ1

φ2

φ3

φ4

 =

−1/12

7/12

7/12

−1/12

The same procedure is followed to derive the coefficients on a non-unifrom grid configuration.
We avoid writing these coefficients as they are lengthy and their derivation is straightfor-
ward.

Appendix 59

A.4. Fourth-order explicit scheme for the first derivative

The explicit fourth-order scheme evaluating the first derivative at a u-momentum cell left
edge reads:

∂u

∂x

∣∣∣y
i,j

= φ5u
xy
is−2 + φ6u

xy
is−1 + φ7u

xy
is + φ8u

xy
is+1. (A.4)

This stencil is the same as that used in (A.3). Hence we only have to modify the linear
system of equations such that the coefficient of the first derivative is unity and all other
terms vanish.

1 1 1 1

−3∆x
2

−∆x
2

∆x
2

3∆x
2

7∆x2 ∆x2 ∆x2 7∆x2

−15∆x3 −∆x3 ∆x3 15∆x3

φ5

φ6

φ7

φ8

 =

0

1

0

0

→

φ5

φ6

φ7

φ8

 =

1/12

−5/4

5/4

−1/12

A.5. Fourth-order interpolation of convective velocities

aligned with the momentum cell on non-uniform grids

The fourth-order interpolation of the divergence-free convective velocity aligned with the
momentum cell reads:

uyi,j = λ1u
y
is−2,j + λ2u

y
is−1,j + λ3u

y
is,j + λ4u

y
is+1,j. (A.5)

Expanding each term on the right hand side around xi,j:

uyis−2,j = uyi,j −
(

∆xis−2,j

2
+ ∆xis−1,j

)
du

dx

∣∣∣y
i,j

+

(
∆xis−2,j

2
+ ∆xis−1

)2

2

d2u

dx2

∣∣∣y
i,j

−

(
∆xis−2,j

2
+ ∆xis−1

)3

6

d3u

dx3

∣∣∣y
i,j
,

uyis−1,j = uyi,j −
(

∆xis−1,j

2

)
du

dx

∣∣∣y
i,j

+

(
∆xis−1,j

2

)2

2

d2u

dx2

∣∣∣y
i,j
−

(
∆xis−1,j

2

)3

6

d3u

dx3

∣∣∣y
i,j
,

uyis,j = uyi,j +

(
∆xis,j

2

)
du

dx

∣∣∣y
i,j

+

(
∆xis,j

2

)2

2

d2u

dx2

∣∣∣y
i,j

+

(
∆xis,j

2

)3

6

d3u

dx3

∣∣∣y
i,j
,

uyis+1,j = uyi,j +

(
∆xis,j +

∆xis+1,j

2

)
du

dx

∣∣∣y
i,j

+

(
∆xis,j +

∆xis+1,j

2

)2

2

d2u

dx2

∣∣∣y
i,j

+

(
∆xis,j +

∆xis+1,j

2

)3

6

d3u

dx3

∣∣∣y
i,j
.

Appendix 60

The linear system of equations solving for the coefficients becomes:

1 1 1 1

−∆xis−2,j

2
−∆xis−1,j −∆xis−1,j

2

∆xis,j
2

∆xis,j +
∆xis+1,j

2(
∆xis−2,j

2
+ ∆xis−1

)2 (
∆xis−1,j

2

)2 (
∆xis,j

2

)2 (
∆xis,j +

∆xis+1,j

2

)2

(
∆xis−2,j

2
+ ∆xis−1

)3

−
(

∆xis−1,j

2

)3 (
∆xis,j

2

)3 (
∆xis,j +

∆xis+1,j

2

)3

λ1

λ2

λ3

λ4

 =

1

0

0

0

A.6. Fourth-order Laplacian operator on uniform grids

The fourth-order Laplacian operator is found by applying the fourth-order divergence op-
erator over pressure cells on the fourth-order gradient operator over the momentum cells.
Employing equation (3.6) we can write:

(D4xG4xp)
xy
i,j =

(G4xp)
y
is,j − (G4xp)

y
is−1,j

∆x

=
−β1(G4xp)

xy
is−2,j + (β1 − β2)(G4xp)

xy
is−1,j + (β2 − β3)(G4xp)

xy
is,j + β3(G4xp)

xy
is+1,j

∆x

Using equation (3.7) we write the fouth-order approximation of the gradient operator over
momentum cells:

(G4xp)
xy
is−2,j =

pyi−1,j − p
y
i−2,j

∆x
=
−β4p

xy
i−3,j + (β4 − β5)pxyi−2,j + (β5 − β6)pxyi−1,j + β6p

xy
i,j

∆x

(G4xp)
xy
is−1,j =

pyi,j − p
y
i−1,j

∆x
=
−β4p

xy
i−2,j + (β4 − β5)pxyi−1,j + (β5 − β6)pxyi,j + β6p

xy
i+1,j

∆x

(G4xp)
xy
is,j =

pyi+1,j − p
y
i,j

∆x
=
−β4p

xy
i−1,j + (β4 − β5)pxyi,j + (β5 − β6)pxyi+1,j + β6p

xy
i+2,j

∆x

(G4xp)
xy
is+1,j =

pyi+2,j − p
y
i+1,j

∆x
=
−β4p

xy
i,j + (β4 − β5)pxyi+1,j + (β5 − β6)pxyi+2,j + β6p

xy
i+3,j

∆x

Upon substituting the gradients, we find:

(D4xG4xp)
xy
i,j =

1

∆x2
{β1β4 p

xy
i−3 + [−β1(β4 − β5)− (β1 − β2)β4] pxyi−2 +

[−β1(β5 − β6) + (β1 − β2)(β4 − β5)− (β2 − β3)β4] pxyi−1,j +

[−β1β6 + (β1 − β2)(β5 − β6) + (β2 − β3)(β4 − β5)− β3β4] pxyi,j +

[(β1 − β2)β6 + (β2 − β3)(β5 − β6) + β3(β4 − β5)] pxyi+1,j +

[(β2 − β3)β6 + β3(β5 − β6)] pxyi+2,j + β3β6 p
xy
i+3,j}.

In two-dimensional context, one has to solve a 13-point stencil. This wide stencil spans over
three pressure cells in each spatial dimension which rises the requirement of three pressure
ghost cells.

Declaration

I hereby declare that the thesis submitted is my own unaided work. All direct or indirect
sources used are acknowledged as references.

München, den January 10, 2020

Khaled Boulbrachene

61

	Acknowledgment
	Abstract
	List of Figures
	Nomenclature
	Introduction
	Motivation

	Background
	Navier-Stokes equations
	Indicial notation and staggered grid generation
	Conservation of momentum and conservation of mass
	Projection Method
	Time integration scheme
	The Immersed Boundary Method

	Finite Volume Discretization of Navier-Stokes on Staggered Grids
	Second-order discretizations on uniform and non-uniform grids
	Semi-Discretized equation on uniform grids
	Semi-Discretized equation on non-uniform grids
	Formal second-order discrete Laplacian operator

	Fourth-order discretizations on uniform and non-uniform grids
	Cell-centered deconvolution of velocity
	Cell-centered deconvolution of pressure
	Filtering for the computation of convected velocities and first derivatives on uniform grids
	Divergence free convective velocities
	Convective fluxes with nonlinear correction
	Formal fourth-order discrete Laplacian operator

	Validation and Numerical Test Cases
	Classical and Convected Taylor-Green vortex test cases

	The Immersed Boundary Method
	Mathematical formulation
	Derivation of fourth-order regularized delta-function
	Integration of IB solver with the fourth order uniform FV code
	Numerical Tests
	Taylor-Green vortex with an embedded circle
	Oscillating channel flow
	Stokes first problem

	Conclusion and Outlook
	Bibliography
	Appendix
	Cell-centered deconvolution of velocity on non-uniform grids
	Cell-centered deconvolution of pressure on non-uniform grids
	Fourth-order explicit scheme for convected velocity
	Fourth-order explicit scheme for the first derivative
	Fourth-order interpolation of convective velocities aligned with the momentum cell on non-uniform grids
	Fourth-order Laplacian operator on uniform grids

