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ABSTRACT 

 

Drilling is one of the most costly and risky activities in oil and 

gas industry due to complexity of interactions with downhole 

formation. Under such conditions, the uncertainty of drillstring 

behavior increase and hence it becomes difficult to predict the 

causes, occurrences, and types of failures. Lateral and torsional 

vibrations often cause failure of Bottom Hole Assembly (BHA), 

drillstring failure, drill bit and wall borehole damages. In this 

work, a model is presented to determine the impact of lateral and 

torsional vibrations on a drillstring during the drilling operation. 

The model aims to mimic real drillstring behavior inside a 

wellbore with regards to its dynamic movements due to multiple 

real situations such as eccentricity of collars, drill pipe sections, 

and stick-slip phenomena occurring due to the interaction of the 

bit and the drill string with the well formation. The work aims to 

develop a basis for determining critical operating speeds and 

design parameters to provide safe drilling procedures and reduce 

drill string fatigue failure. Lagrangian approach is used in this 

study to attain drill string lateral and torsional vibration coupling 

equations. The nonlinear equations are solved numerically to 

obtain the response of the system.  In this work, we also present 

a brief description of an in-house constructed experimental 

setup. The setup has the capability to imitate the downhole lateral 

and torsional vibration modes. Parameters from the experimental 

investigations are incorporated for validation of the 

mathematical models and for prediction of the drill string fatigue 

life. Such investigations are essential for oil/gas industries as 

they provide solutions as well as recommendations about 

operating speed, lateral and torsional amplitudes measurements 

and corrections, and the conditions for avoiding occurrence of 

natural frequency(ies) of the system. 

 

INTRODUCTION 

 

Despite huge advances in technology and unconventional fossil 

fuel recovery, drilling a well is still the primary technique for 

extracting oil and natural gas. This process is highly complicated 

with huge systems being utilized for drilling. 

 

In drilling of oil and gas wells, severe shock and vibrations occur 

that are detrimental to the service life of drillstrings and down-

hole assembly tools. The causes of these vibrations are due to 

complex surroundings and a lot of uncertainties include impact 

and friction at the interfaces of borehole/drillstring and bit/ hard-

rock formation, imbalances, drillstring eccentricity or initial 

curvature in the drill collar sections, various linear or non-linear 

resonances [1-3].  

 

There are three modes of vibration mainly axial, lateral, and 

torsional, which indicate direction and response of the drillstring 

when it runs into trouble downhole [4]. In axial mode, the 

vibration is longitudinal motion along the drillstring resulting in 

tension and occasionally compression-tension reversals when 

the bit comes across hard formation while cutting through loose 

formation at high speed (also known as bit-bounce). In lateral 

mode, the vibration is side to side motion that causes flexing or 

bending of components again leading to stress reversals where 

one side is in a different tensional state from the other. In 

torsional mode, the vibration is resistance to the rotation 

resulting in twisting as torque is applied to overcome resistance. 

As a result of such torsional vibrations, the angular velocity of 

rotary surface may vary with time. Bit formation interaction, 

drillstring–wellbore contacts, mass imbalance, lateral shocks, 

bit, BHA whirl and stick-slip are the main sources of these 

vibration modes.  

 

Drillstring fatigue failure is very common due to generation of 

single and coupled vibration modes and mechanisms. These 

severe vibrations often cause failures of BHA tool, drill pipe 

abrasive wear, drill bit and wall borehole damages, reduction of 

the rate of penetration (ROP), and consequently incur high costs 

[5-6].  

 

Several attempts have been made to study the drillstring 

vibrations and to overcome the difficulties encountered by field 

engineers. Laboratory testing to investigate lateral behavior of a 
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part of a drill string represented by a rod and subjected to axial 

loading was highlighted in [7]. The experimental set-up takes 

into account the curvature of the rod, mud, stabilizers and 

rotational speed. The lateral behavior of the drill string subjected 

to axial excitations of the drill bit is governed by time varying 

parameter equations due to torsion-lateral and longitudinal-

lateral couplings. The dynamic stability of drill strings has been 

studied by Yigit and Christofourou [8]. In their study transverse 

vibrations induced by axial loading in a drill string modeled by 

a uniform slender beam undergoing axial and transverse 

deformations. Non rotating drill strings are considered and all 

deformations are assumed to occur in a single plane. The 

transverse motion of the beam is conned by the borehole and is 

assumed to be adequately modeled by Euler-Bernoulli beam 

theory. In the problem formulation, linear and nonlinear 

coupling were retained which leads to fully coupled differential 

equations. A method was suggested in [9] to examine some of 

the drilling technology factors that can affect drill string fatigue 

behavior. Such drilling technology factors include tensile load, 

torque, abrasive wear and mud corrosion. Alternative 

approximate techniques to determine the amplitudes of the limit 

cycles that evolve from stick-slip vibrations were carried out in 

[10]. Approximate closed-form equations were derived for 

normal and tangential contact forces of rough surfaces in dry 

friction in [11]. Some other approaches were suggested for the 

analysis of some of the drilling technology factors that can affect 

the drilling string fatigue behavior. Comparative study of full-

scale fatigue test results and field data were accordingly 

presented in [12-14]. Such drilling factors include threaded 

connections. A full scale mathematical modeling to predict 

fatigue life in a threaded connection is proposed in [15].  

 

Modeling of coupled axial, lateral, and torsional vibrations of 

drill strings has been presented in [16]. In this model, governing 

equations of motion for a drill string considering coupling 

between axial, lateral and torsional vibrations were obtained 

using Lagrangian approach. Many studies on drill string 

dynamics are mostly concerned with axial and tensional 

vibrations. Coupling between these two motions has been 

discussed in [17] where some measuring tools were developed 

to estimate axial force, torque, axial and rotational motions at the 

top of a drill string. Equations of motion for coupled torsional 

and bending vibrations were obtained in [18] through a 

simplified model with equivalent lumped parameters. The 

dynamic response of a drill string was obtained by a numerical 

solution of equations. Case studies based on downhole 

measurements were presented in [19]. Several important types of 

vibration, including forward and backward whirl, linear coupling 

between WOB and lateral vibration, and bit bounce were 

illustrated. The case studies have also considered bending 

vibration of rotating and nonrotating drill string as well as 

whirling and parametric instabilities. Dynamic behavior of a 

section of whirling drill collars were analyzed in terms of rotor 

dynamics, with account taken of the non-linear influences caused 

by drilling fluid, stabilizer clearance and stabilizer friction [20]. 

An effective means of minimizing torsional vibrations, and thus 

improving coring performance, using an active-damping system 

was developed for electrical rotary drives in deep seas 

exploration operations [21]. The research work in [22-28] has 

investigated stability of drill string considering three simple 

mechanical systems representing string-torsional vibration, bit-

lateral dynamics, and coupled torsional-lateral vibration of the 

bit string assembly.  

 

It is well-known that the drillstring and downhole tool failure 

usually occurs from failing to control one or more of the 

vibration mechanisms. However, so far all models were not able 

to accurately determine drillstring design parameters. The 

current work is motivated by the fact that the solutions should 

start with the ability to measure different modes and hence 

identify the different vibration mechanisms. In contrary to 

previous  research, this work aims to imitate real drillstring 

behavior inside the wellbore with regards to its dynamic 

movements based on modeling an in-house constructed testing 

rig which mimic the real drilling field operations. In addition, 

this work develops a basis for determining the critical operating 

speeds and design parameters to provide a basis for developing 

safe drilling procedures and developing fatigue failure models 

that can predict the safe operating life of equipment under such 

loads. This procedure should pave the way for future work 

involve developing an accurate drillstring buckling, stick-slip, 

and lock-up failure models. 

 

In general, in modeling axial vibration approaches are mainly 

based on modeling an undamped oscillation of a bar and 

developing its governing linear partial differential equation 

considering different scenarios through a variety of boundary 

conditions and damping effects. For lateral vibration, beam 

theory is commonly utilized to study the flexural modes of the 

drillstring while employing dynamic lumped models to study the 

lateral displacement and the behavior of the drillstring. Torsional 

vibrations are mainly modeled using modified versions of the 

torsional pendulum. Coupled versions of these models are also 

exist in order to capture more complex behavior with higher 

fidelity such as the axial-torsional and torsional-bending models. 

However, none of these models were able to accurately predict 

the drillstring behavior and its failure modes or to provide an 

accurate estimates about the drillstring critical speed, deflection  

or critical frequency. 

  

The current work offers a mechanical performance description 

of a complex nonlinear dynamics of drillstrings as well as 

provides a lumped parameters model which can be readily used 

for other slender rotatory components subjected to fatigue 

loading. The testing rig induces these vibration modes as well as 

facilitates measurements of lateral and torsional vibrations. 

 

Limitations of the proposed experimental drillstring induced 

vibration testing rig include scaling issues (domain size effect) 
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and some difficulties in simulating the real downhole vibrations. 

Field experiments, on the other hand, are not broadly used for 

cross-validation of the performance of drillstrings under such 

vibration modes. One more testing procedure that was not 

conducted in this work is modify the testing facility so it can be 

readily accommodate testing of the threaded connections of the 

tool joints. The  mechanism of fatigue failure in the tool joint of 

the drillstring plays a role in drillstring serviceability.  

 

This paper aims at gaining deeper understanding of the complex 

behavior of drillstring under vibrations and its detrimental effect 

on drilling operation. The Lagrangian approach is used to obtain 

the drill pipe lateral and torsional vibration coupling equations 

of motion. The mathematical model is expressed in terms of four 

independent degrees of freedom. The effects of bending and 

torsion vibrations, and whirling motion of the drillstring are 

included in the model. The nonlinear equations are solved 

numerically to obtain the response. The experimental setup 

provides further development of a more comprehensive testing 

of drillstring. It can readily accommodate other relevant effects 

such as wellbore and drill string contact, drill string and mudflow 

interaction and stick-slip phenomena. Fatigue life is also 

measured from the number of cycles associated with the 

amplitude of the stress cycles created due to lateral vibration 

Results showed that drill string size and lateral vibration stress 

cycles have significant effects on the fatigue life of the 

drillstring. 

MATHEETICAL MODELING 

 

In this work a mathematical model that accounts for the effects 

of lateral and torsional vibrations on a drillstring generated due 

to the interaction of the drillstring with the formation during the 

drilling operation is formulated. Modeling of such rotating 

component is highly non-linear and complex due to contact 

behavior and dynamics of the drillstring which involve broad 

vibration profiles include axial, lateral and torsional modes. The 

force applied on the bit, termed Weight-on-Bit (WOB) is the 

essential force in drilling process. WOB affects rate of 

penetration as well as natural frequencies. The lower portion of 

the drill collars is assumed to be under combined torsional and 

lateral vibrations. Lateral vibrations are recognized as the 

leading cause of drillstring and bottom hole assembly (BHA) 

failures, and the most destructive type of vibration in creating 

large shocks as the BHA impacts with the wellbore. Drillstrings 

are considered to be a slender systems, and it is known that for 

highly slender rotating structures (i.e., systems with large length 

to diameter ratios), lateral and torsional vibrations are strongly 

coupled. In such situation the effect of axial vibration due to bit 

bounce caused by axial loading on the drillstring failure is less 

compare to other types of vibration. However, the effect of 

coupled three modes of vibration (Lateral, Torsional and Axial) 

on drillstring failure is intended to be a future work. Introducing 

axial vibration would require major modifications in the 

experimental setup.  

 

In such a problem, it is convenient to model it as a simple Jeffcott 

rotor model. The Jeffcot rotor model is capable of retaining 

crucial characteristics of a rotor in its imbalance response. A 

schematic diagram of the unbalanced mass and rotor system is 

shown in Fig. 1.  

 

Fig. 1. Representation diagram for the equivalent model 

The model consists of two rigid frictionless bearings, an elastic 

isotropic shaft, and a rigid disk located at the center of the shaft. 

The proposed model imitates the built-in experimental setup and 

captures its dynamic response for different system’s parameters. 

 

Jeffcott lumped-parameter model have been used to adequately 

describe the dynamics response of a rotary drillstring. The model 

was used to study the nonlinear dynamics of the drillstring and 

its kinematic behavior. Jeffcott model has been conveniently 

considered to investigate the drillstring fatigue failure where 

amplitudes of lateral vibrations due to eccentricity of mass and 

angle of twist as a result of applied torques were captured 

precisely. It is known that fatigue failure happens when a 

structure is subjected to cyclic (fluctuated) stresses which is 

associated with lateral amplitudes and twisting angle, hence 

Jeffcott rotor model was found advantageous for this study. 

Jeffcott rotor model has yielded a motion of the rotor that was 

much more comparable to the experimental work [29-34].  

 

In the proposed model, an unbalance mass 𝑚𝑏 is attached to the 

rotor of mass 𝑀 and mass moment of inertia 𝐼𝑜 at distance 𝑒 

represent eccentricity with respect to its geometrical center. The 

lumped parameter model is shown in Fig. 2. The rotor is assumed 

to be symmetrical such that the lateral stiffnesses and lateral 

damping have an equivalent spring constants and damping 

coefficients of 𝑘𝑥 = 𝑘𝑦 = 𝑘𝑏 and 𝑐𝑥 = 𝑐𝑦 = 𝑐𝑏, respectively. 

Torsional motion is represented by dissipating and conservative 

components defined by the damping coefficient 𝑐𝑡𝑜𝑟  and the 

spring constant 𝑘𝑡𝑜𝑟. The degrees of freedom can be described 

by three orthogonal unit vectors, namely, (𝑎1 ,𝑎2), (𝑏1, 𝑏2) and 

(𝑐1, 𝑐2). The unit vectors are projected into x and y coordinates 

and fixed at the origin O. Both (𝑏1, 𝑏2) (𝑐1, 𝑐2) unit vectors are 

fixed at the geometrical center of the rotor and allowed to rotate. 

The reference frame (𝑏1, 𝑏2) is allowed to rotate at a constant 

angular speed (𝜃̇) with respect to (𝑎1 ,𝑎2) reference frame. 

Therefore, the angle between 𝑎1 and 𝑏1 defines rigid body 
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rotation 𝜃. The torsional deformation (𝛾) is defined as the angle 

between 𝑏1and 𝑐1.  

 

 
 

Fig. 2. Lumped parameter model 

 

In this setting, when the rotor is at rest, all unit vectors coincide. 

Once a drive speed (𝜃̇) is introduced, the rotor moves  away from 

the origin O due to the effect of the centrifugal force acting on it. 

As a result, the rotor’s geometrical center is displaced to the point 

(𝑥̃, 𝑦̃). In addition, it is assumed that the rotor is only able to 

undergo planar motions with no gyroscopic effects due to 

rotations about the x and y axes. A constraint is imposed as 𝑎3 =
𝑏3 = 𝑐3 at the entire time t, where 𝑎3 = 𝑎1 x 𝑎2, 𝑏3 = 𝑏1 x 𝑏2 

and 𝑐3 = 𝑐1 x 𝑐2. In order to retain generality, eccentricity is (e) 

initially parallel to the x-axis.  

 

In Fig. 2, the angle 𝛽 is defined as follows: 

 𝛽 = 𝜃 + 𝛾 (1) 

 

Thus, 𝛽 represents the total angular displacement of the rotor. 

Taking time derivative of Eq. (1) results in: 

 

 𝛽̇ = 𝜃̇ + 𝛾̇ (2) 

 

where 𝛽̇ represent the total angular speed of the rotor. By 

normalizing 𝛽̇ with respect to 𝜃̇ we get: 

 
𝛽̇𝑛𝑜𝑟𝑚 =

𝛽̇

𝜃̇
 (3) 

EQUATIONS OF MOTION: 

There are mainly three approaches that could be used to derivate 

the governing equations of a dynamic system, namely, 

Hamilton's principle, Lagrange principle or direct equilibrium 

using d' Alembert's principle. Both Hamilton and Lagrange are 

energy principles which derive the equations of motion by  

considering the system from an overall perspective, without the 

need to identify the internal forces at the interconnections of the 

system’s components as it is the case in the vector based d' 

Alembert's principle. Therefore, in modeling drillstring it is 

simpler to consider energy principal as energy is a scalar 

quantity, independent on the choice of coordinate system and can 

easily deal with multi-degrees of freedom systems with the help 

of the generalized coordinates which describe the system. In 

addition, while Hamilton's principle uses an integral based 

approach, Lagrange principle is a differential approach which 

requires considerably less computational effort. Therefore, in 

this work, Lagrange's equation is used to derive the system’s 

equations of motion. 

 

 𝐿 = 𝑇 − 𝑈 (4) 

 

 𝑑

𝑑𝑡
(
𝛿𝐿

𝛿𝑞̇𝑖

) −
𝛿𝐿

𝛿𝑞𝑖

+
𝛿𝐷

𝛿𝑞̇𝑖

= 𝐹𝑖 (5) 

 

where: 

𝑞𝑖: generalized coordinate (Degree of Freedom). 

𝐷: Rayleigh dissipation function. 

𝐹𝑖: generalized force along a particular generalized coordinate. 

KINETIC AND POTENTIAL ENERGIES 

 

The Kinetic energy of the system can be written as: 

 

 𝑇𝑡𝑜𝑡𝑎𝑙 = 𝑇𝑀 + 𝑇𝑏  (6) 

 

where: 

𝑇𝑀: Kinetic energy of the rotor. 

𝑇𝑏: Kinetic energy of the unbalance mass. 

 

hence, 

 
𝑇𝑀 = 

1

2
𝑀(𝑥̇2 + 𝑦̇2) + 

1

2
𝐼𝑜(𝜃̇ + 𝛾̇)2 (7) 

and, 

 
𝑇𝑏 =

1

2
𝑚𝑏𝑣𝑏

2 (8) 

where: 

𝑣𝑏: unbalanced mass velocity. 

 

the position of the unbalance mass at an instant can be written 

as: 

 

 𝑥𝑏⃗⃗⃗⃗ = [𝑥 + 𝑒 cos(𝜃 + 𝛾)]𝑖
+ [𝑦 + 𝑒 sin(𝜃 + 𝛾)]𝑗 

(9) 
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taking the time derivative of  𝑥𝑏⃗⃗⃗⃗ , this yields 

 

 𝑑

𝑑𝑡
𝑥𝑏⃗⃗⃗⃗ = 𝑣𝑏⃗⃗⃗⃗ = [𝑥̇ − 𝑒(𝜃̇ + 𝛾̇) sin(𝜃 + 𝛾)]𝑖

+ [𝑦̇ + 𝑒(𝜃̇

+ 𝛾̇) cos(𝜃 + 𝛾)]𝑗 

(10) 

 

by squaring both sides and simplifying, 𝑣𝑏
2 can be found as: 

 

 𝑣𝑏
2 = {𝑥̇ − 𝑒(𝜃̇ + 𝛾̇) sin(𝜃 + 𝛾)}

2

+ {(𝑦̇ + 𝑒(𝜃̇

+ 𝛾̇) cos(𝜃 + 𝛾)}
2
 

(11) 

 

Substitute in Eqn. 8, 

 

𝑇𝑏 =
1

2
𝑚𝑏 [{𝑥̇ − 𝑒(𝜃̇ + 𝛾̇) sin(𝜃 + 𝛾)}

2
+ {(𝑦̇ + 𝑒(𝜃̇ +

𝛾̇) cos(𝜃 + 𝛾)}
2
]              (12) 

 

Then the 𝑇𝑡𝑜𝑡𝑎𝑙  can be written as: 

 

𝑇𝑡𝑜𝑡𝑎𝑙 =
1

2
𝑀(𝑥̇2 + 𝑦̇2) +  

1

2
𝐼𝑜(𝜃̇ + 𝛾̇)2

+ (
1

2
𝑚𝑏) [{𝑥̇ − 𝑒(𝜃̇ + 𝛾̇) sin(𝜃 + 𝛾)}

2

+ {(𝑦̇ + 𝑒(𝜃̇ + 𝛾̇) cos(𝜃 + 𝛾)}
2
]           (13) 

 

       

The system’s total potential energy can be divided into three 

terms, namely, 𝑈𝑥, 𝑈𝑦 and 𝑈𝑡𝑜𝑟 . Where 𝑈𝑥, 𝑈𝑦 and 𝑈𝑡𝑜𝑟  are the 

potential energies along the x, y and torsional direction, 

respectively. Therefore, the total potential energy can be written 

as follows: 

 

𝑈𝑡𝑜𝑡𝑎𝑙 = 𝑈𝑥 + 𝑈𝑦 + 𝑈𝑡𝑜𝑟                                                           (14) 

       

where 

𝑈𝑥 =
1

2
𝐾𝑏𝑥

2 

and, 

𝑈𝑦 =
1

2
𝐾𝑏𝑦

2 

 

The bending stiffness (𝐾𝑏) in the above Equations is a function 

of the material property, geometry and applied boundary 

conditions.  

In this work, the test specimen is assumed to be a beam fixed at 

both ends (fixed bearing condition) with a concentrated load at 

its center resulting from the centrifugal force of the eccentric 

mass. The formula for the maximum deflection taking place at 

midspan is given by the following: 

𝑚𝑎𝑥 =
𝑃𝐿3

192 𝐸𝐼
          (15)  

The bending stiffness is defined as: 

𝐾𝑏 =
𝑃


 

Substitute in Eqn. (15) gives the bending stiffness for a fixed 

bearing conditions: 

𝐾𝑏 = 192
𝐸𝐼

𝐿3    (16) 

 

where: 

𝐸: Material’s modulus of elasticity. 

𝐼: Second moment of area of tested specimen. 

𝐿: Length of tested specimen. 

P: Applied load at the center. 

 

Eq. (16) was validated numerically using finite element analysis 

for a pipe fixed at both ends and rotating around its axis. 

 

The potential torsional energy can be written as 

 

𝑈𝑡𝑜𝑟 =
1

2
𝐾𝑡𝑜𝑟𝛾

2     (16) 

 

Similar to the bending stiffness, torsional stiffness (𝐾𝑡𝑜𝑟) is 

defined as the applied torque over the resulting angle of twist.  

 

Therefore, torsional stiffness 𝐾𝑡𝑜𝑟  can be written as: 

 

𝐾𝑡𝑜𝑟 =
𝑇

𝛾
   

 

and the angle of twist is 

 

𝛾 =
𝑇𝐿

𝐺𝐽
 

where: 

𝐺: Material’s modulus of rigidity 

𝐽: Polar moment of inertia of the tested specimen 

 

Hence, 𝐾𝑡𝑜𝑟  is can be written as 

 

  𝐾𝑡𝑜𝑟 =
𝑇
𝑇𝐿

𝐺𝐽

=
𝐺𝐽

𝐿
    (17) 

 

The total potential energy yields:  

 

𝑈𝑡𝑜𝑡𝑎𝑙 = 𝑈𝑥 + 𝑈𝑦 + 𝑈𝑡𝑜𝑟

=
1

2
𝐾𝑏𝑥

2 +
1

2
𝐾𝑏𝑦

2 +
1

2
𝐾𝑡𝑜𝑟𝛾

2                (18) 
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Now the torsional motion component has been successfully 

derived. Similarly, the non-conservative energy component can 

be developed as follows:  

 

𝐷𝑡𝑜𝑡𝑎𝑙 = 
1

2
𝑐𝑏𝑥̇

2 + 
1

2
𝑐𝑏𝑦̇

2 + 
1

2
𝑐𝑡𝑜𝑟𝛾̇

2   (19) 

 

where, 𝑐𝑏 and 𝑐𝑡𝑜𝑟 are  

 

𝑐𝑏 = 2𝜁𝑏𝑤𝑛,𝑏(𝑀 + 𝑚𝑏) 

  

𝑐𝑡𝑜𝑟 = 2𝜁𝑡𝑜𝑟𝑤𝑛,𝑡𝑜𝑟(𝐼𝑜 + 𝑚𝑏𝑒
2) 

  

and other terms (𝜁𝑏  , 𝜁𝑡𝑜𝑟 , 𝑤𝑛,𝑏 and 𝑤𝑛,𝑡𝑜𝑟  ) respectively represent 

selected bending, torsional damping ratios, bending and torsional 

natural frequencies. 𝑤𝑛,𝑏 and 𝑤𝑛,𝑡𝑜𝑟  can be defined as 

 

𝑤𝑛,𝑏 = √
𝐾𝑏

𝑀 + 𝑚𝑏

 

𝑤𝑛,𝑡𝑜𝑟 = √
𝐾𝑡𝑜𝑟

𝐼𝑜 + 𝑚𝑏𝑒
2
 

 

Lagrange equation which was given in Eq. (4) can be written as: 

 

𝐿 = 𝑇𝑡𝑜𝑡𝑎𝑙 − 𝑈𝑡𝑜𝑡𝑎𝑙 

 

𝐿 = [
1

2
𝑀(𝑥̇2 + 𝑦̇2) + 

1

2
𝐼𝑜(𝜃̇ + 𝛾̇)

2
 + (

1

2
𝑚𝑏) [{𝑥̇ −

𝑒(𝜃̇ + 𝛾̇) sin(𝜃 + 𝛾)}
2
+ {(𝑦̇ + 𝑒(𝜃̇ + 𝛾̇) cos(𝜃 + 𝛾)}

2
]] −

[
1

2
𝐾𝑏𝑥

2 +
1

2
𝐾𝑏𝑦

2 +
1

2
𝐾𝑡𝑜𝑟𝛾

2]                                   (20) 

 

Utilizing Lagrange formulation in three degrees of freedom (Eq. 

5), yield the following three equations of motion for the system:  

 

(𝑀 + 𝑚𝑏)𝑥̈ + 𝑐𝑏𝑥̇ +  𝑘𝑏𝑥 = 𝑚𝑏𝑒 [(𝜃̈ + 𝛾̈) sin(𝜃 + 𝛾) +

(𝜃̇ + 𝛾̇)
2
cos(𝜃 + 𝛾)]    (21) 

 

(𝑀 + 𝑚𝑏)𝑦̈ + 𝑐𝑏𝑦 + 𝑘𝑏𝑦 =  𝑚𝑏𝑒 [(𝜃̇ + 𝛾̇)
2
sin(𝜃 + 𝛾) −

 (𝜃̈ + 𝛾̈) cos(𝜃 + 𝛾)] (22) 

 

𝐼𝛾̈ + 𝑐𝑡𝑜𝑟𝛾̇ + 𝑘𝑡𝑜𝑟𝛾 = 𝑚𝑏𝑒[(𝑥̈ sin(𝜃 + 𝛾)) − (𝑦̈ cos(𝜃 +
𝛾))] + 𝑇𝑡𝑜𝑟   (23) 

 

where, 𝐼 = 𝐼𝑜 + 𝑚𝑏𝑒
2 

 

Eqs. (21-23) are nonlinear ordinary differential equations. These 

set of equations were solved numerically using fourth-order 

Runge–Kutta Algorithm in Matlab software. The outcome of 

applying this Algorithm is presented in the results and discussion 

section. This work considered the single step scheme using the 

versatile fourth order Runge-Kutta Algorithm instead of the 

basic Euler solver and other ODE solvers as it is more efficient, 

accurate and can be implemented with minimal additional work. 

Taking computational effort and step size into account, the 

Runge-Kutta Algorithm computes a solution value that is near 

the limits imposed by machine accuracy (in single precision 

arithmetic). The goal was to arrive at a decent approximation to 

the initial value problem. For instance, the authors noticed that 

an ODE solver such as the Euler Method spirals away from the 

exact periodic solution, whereas the 4th order Runge-Kutta 

Algorithm performs rather well. 

EXPERIMENTAL APPROACH 

 

A novel in-house experimental setup capable of imitating 

downhole lateral and torsional vibrations has been designed and 

constructed. In this work, vibration coupling effects and 

interactions between various phenomena such as whirling, and 

parametric excitation are investigated. Parameters of 

experimental setup have been adopted to validate the previously 

developed mathematical model. A major focus of the setup is to 

experimentally examine the coupling impact on the fatigue life 

of drill string. This helps reducing drill string failures as well as 

provides satisfactory answers and justifications about 

uncertainty and performance of the drill string under various 

loading and operating conditions. Subsequent sections discuss 

briefly limitations, constraints, design specifications, design 

development and construction of the experimental setup.    

 

Limitations and Constraints 

• The length of the setup and drillstring are kept small due to 

the space limitations and to provide easy mobility. The 

length of experimental setup is 6.0 m and the length of the 

drillstring is 5.0 m. The length of the portion of the 

drillstring between both chucks is 4 m. 

• Due to restrictions in dimensions, drillstring diameter and 

thickness are also reduced in order to initiate a more 

realistic cycles of fatigue failure. 

• Drillstring with diameters of (1.0", 2.0”, and 3.0") were 

used. 

• Drillstring thicknesses are varied from one drillstring to 

another. Drillstring thicknesses of 5mm, 4mm, and 3mm 

are used.  

• The tested drillstrings are allowed to freely rotate and fixed 

at the top and bottom ends to simulate real-world drilling 

conditions. 

• Since lateral vibrations are recognized as the leading cause 

of drill string and BHA failures, the experiments were 

initially designed to account for the effect of lateral 

vibrations on the fatigue life of the drill string.  

• Coupling impact of lateral and torsional vibrations are also 

examined. The torsional vibration is induced using the 

setup braking mechanism.  

• Further investigations to account for the consequence of 

applying various torsional loadings are ongoing research.     
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Experimental Setup 

The experimental setup (Fig. 3) mainly consists of the following: 

a testing tube represents the drill string: a support system that 

includes supporting plates fixed to ground to provide stability for 

the facility: C-Channels beams to connect the supporting tables; 

a loading and rotation mechanism which includes motor, 

sprocket, chain, chucks, pillow bearings, connections, flanges 

and housing pipes; stabilizers representing the wellbore; a 

control unit and speed invertor; a sensing mechanism that 

includes torque measurement system for measuring top and 

bottom torques, Hall Effect for measuring rotational speed, 

number of cycles, and ultrasound sensors for measuring 

vibration amplitude; a braking mechanism is utilized to induce 

reversed torque at the other end of the drill string; and a data 

acquisition system that includes a twelve channels data logger 

and computer. Fig. 3a shows an image of the experimental setup 

while Fig. 3b shows a schematic of the setup and its individual 

components. Fig. 3c shows torque measurement system fixed to 

the drill string. The representations for the numbers indicated on 

Fig. 3b are listed in Table 1.  

 

 
(a) 

 

 
(b) 

 

 
 (c) 

 

Fig. 3. Experimental Setup (a: image of experimental setup and 

loading mechanism, b: schematics shows individual 

components, c: torque measurement system) 

 

Table 1: Main components of the experimental setup 

COMPONENTS/ 

SYSTEMS 
PART NAME 

1 Computer 

2 Data acquisition system 

3 3-plase electrical motor 

4 Speed controller 

5 Shaft 

6 Sprocket and Chain 

7 Chuck and flange assembly 

8 Stabilizer 

9 Specimen (Tube) 

10 Ball bearing 

11 Compressor 

12 Brake system controller 

13 Hall effect sensor 

14 Brake on/off switch 

15 Ultrasonic sensor 

16 Torque Measurement System 

 

The setup structural support consists of two 16 mm thickness 

mild steel tables, ring shape stabilizers and four C-channel 

connecting the tables to the stabilizers and providing stability to 

the setup. The C-channels are fixed to a concrete floor. The 

structural provides safe working environment and holds other 

mechanism such as the rotation mechanism and braking system.  

The chuck is connected to the housing pipe as shown in Fig. 3a. 

The same mechanism is fixed on the other side of the setup. The 

housing pipes allow the drill string guided through it for about 

0.5 m on each side to give stability and rigidity for the drill string. 

The housing pipes are also guided through two ball bearings, to 

give support and allow smooth rotation. The total length of the 

specimen is 6 m whereas the length between the two chucks is 5 

m since a total of 1 m of the specimen is guided inside the 

housing pipes.  

 

Testing Procedure  

Numbers of mild steel tubes represent drill strings of various 

outer diameters (1", 2", and 3") used in this work. The drill string 

is rotated through 12-hp motor using (sprocket/chain) power 

transmission component. A speed inverter (Variable Frequency 

Drive) is utilized to regulate the angular speed of the drill string. 

Lateral vibration is induced in the drill string by adding eccentric 

mass as shown in Fig 4. To induce torsional vibration, a braking 

mechanism is adopted. In this work, the breaking mechanism is 

constrained to brake at fixed duration and steady applied torque 

while allowing multiple numbers of brakes. Variation of applied 

torque and intervals will be considered in our ongoing research 

study. Braking produces a reverse torque on the drill string with 
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the risk of unscrewing of the drill string, and hence introduces a 

twisting angle. In this work, the angular speed, lateral amplitude, 

and the applied and reverse torque are measured using speed 

inverter, Hall Effect, and torque measurement system, 

respectively. High performance universal data loggers (as shown 

in Fig. 5) with 24-bit analogue-to-digital converters and  up to 

16 universal channels have been used to process and display 

results. 

 

 
 

Fig. 4. Unbalanced mass (mb) 

 

 
 

Fig. 5. Standalone date logger 

 

RESULTS AND DISCUSSION 

Methods of resolution of mathematical model 

In this work a mathematical model of a drilling pipe was 

successfully presented. The system’s equations of motion were 

derived using Lagrange’s Equations as introduced in above 

section. These equations were solved numerically by using a 

Runge Kutta algorithm in Matlab software. The model was first 

examined using readily measured parameters and other 

calculated parameters as listed in Table 1.  

 

Table 1: Experimental and calculated parameters 

PARAMETER VALUE UNIT 

𝑐𝑏 0.2 𝑁. 𝑠/𝑚 

𝑐𝑡𝑜𝑟 3𝑒−4 𝑁.𝑚. 𝑠/𝑟𝑎𝑑 

𝑒 0.05 𝑚 

𝑀 9 𝑘𝑔 

𝑚𝑏 2.5 𝑘𝑔 

𝐾𝑏 1 𝑁/𝑚 

𝐾𝑡𝑜𝑟  0.05 𝑁.𝑚/𝑟𝑎𝑑 

Undamped rotor rotating at critical speed: 

The undamped system is examined and shown that the critical 

speed occurs when 𝜃̇ = 𝑤𝑛,𝑏. and 𝑐𝑏 = 0 . Fig. 6 shows that 

lateral deflections are continuously increased as undamped 

system is operated at its critical speed. Hence, rotating close to 

its critical speed maximum values of deflections are reached. 

Operating at a speed greater or lower than the critical speed 

would result in a smaller deflection values. Therefore, the 

subsequent investigations are carried at the rotor’s critical speed 

as it represents the worst case scenario. Fig. 7 shows trajectories 

of horizontal and vertical deflections of undamped shaft rotating 

at critical speed.  

 

Fig. 6. Undamped system lateral deflections  

 

 
 

Fig. 7. Trajectories horizontal and vertical deflections of 

undamped shaft 

 

Effect of Bending damping ratio on rotor’s response 

The effect of bending damping ratio on the rotor’s response was 

investigated by changing the value of the damping coefficient.  

The effects of changing damping ratio (𝜁𝑏 = 0.05, 0.07 & 0.1) 

on transient response and magnitude of deflection were 

observed. It can be depicted in Figure 8.a, 9.a and 10.a and their 

trajectories in Figure 8.b, 9.b and 10.b that by increasing the 

bending ratio, the time required to reach steady state response 

and deflections are reduced. This is due to the increase in the 

dissipated energy of the system. For instance, in Fig. 8a steady 

state response was reached at 1.3 seconds. However, it is around 

1.2 and 1.0 as shown in Figs. (9.a & 10.a).   
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1. Bending damping ratio 𝜁𝑏 = 0.05

 

Fig. 8 a and b Effects of changing damping 

ratio at 𝜁𝑏 = 0.05 

 

2. Bending damping ratio 𝜁𝑏 = 0.07 

 

 
Fig. 9a and b Effects of changing damping ratio at 𝜁𝑏 = 0.07 

 

3. Bending damping ratio 𝜁𝑏 = 0.1 

 
Fig. 10 a and b Effects of changing damping ratio at 𝜁𝑏 = 0.1 

 

Effect of unbalanced mass on rotor’s response 

The effect of unbalanced mass on the rotor’s response is 

investigated. It can be noticed from Figs. 11 (a and b), 12 (a and 

b) and 13 (a and b) that when the unbalanced mass (1kg, 3kg and 

5kg) is increased, the lateral deflection is also increased as a 

consequence of the increase in the centrifugal force while 

bending damping ratio is kept constant at (𝜁𝑏 = 0.07). A steady 

state is reached at ± 0.035m for unbalanced mass of 1kg. 

Whereas, the steady state is at 0.09m for 3kg and about 0.13m 

for 5kg unbalanced mass, respectively.   

 

1. unbalanced mass 𝑚𝑏 = 1𝑘𝑔 and 𝜁𝑏 = 0.07
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Fig. 11. Effect of unbalanced mass on the rotor’s 

response at 𝑚𝑏 = 1𝑘𝑔 and 𝜁𝑏 = 0.07 

 

2. Unbalanced mass 𝑚𝑏 = 3𝑘𝑔 and 𝜁𝑏 = 0.07 

 
Fig. 12. Effect of unbalanced mass on the rotor’s response at 

𝑚𝑏 = 3𝑘𝑔 and 𝜁𝑏 = 0.07 

 

3. Unbalanced mass 𝑚𝑏 = 5𝑘𝑔 and 𝜁𝑏 = 0.07 

 
Fig. 13. Effect of unbalanced mass on the rotor’s response at 

𝑚𝑏 = 5𝑘𝑔 and 𝜁𝑏 = 0.07 

 

Effect of applied reverse torque on rotor’s response: 

The effect of reverse torque on the rotor’s response is also 

investigated. Figure 14 shows that as the external reversed 

applied torque is increased, the resulting angle of twist 𝛾 is 

increased as well. Figure 15 shows the effect of torque versus 

normalized total angular speed of the rotor 𝛽̇𝑛𝑜𝑟𝑚. The results in 

Figs 14 and 15 are generated  for an applied torque equal 70 N.m, 

140 N.m, and 180 N.m at the time interval [10-12]. It is noticed 

that at instants when applied torque is released, a large 

fluctuation takes place and causes the rotor to momentarily stop 

and start rotating in the reverse direction with respect to the 

applied angular speed 𝜃̇. The torsional spring action of the 

system stores energy and once released it causes the rotor to spin 

with an angular velocity at least two times greater than 𝜃̇. For 

instance, at 70 N.m applied reversed torque, the angle of twist 

(𝛾) has changed form - 6o to 1.5o. Similar observations are also 

noticed in Fig 15. 

 
Fig. 14. Effect of applied reverse torque on rotor’s response at 

time interval [10-12] 

 

 
Fig. 15. Effect of applied reverse torque on rotor’s response at 

time interval [10-12] 
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drillstrings. Fig. 17 shows that the amplitudes are lower in larger 

drillstring diameters at same rotational speed. In addition, the 

lateral amplitude is higher for higher speed for the same 

drillstring dimensions.  

 

Fig. 17. Drill strings behavior at various rotational speeds 

 

Fig. 17 also shows that the lateral amplitude is increased almost 

linearly when the rotation speed increased. For instance, when 

the 1" drillstring rotation speed was near its critical speeds the 

lateral amplitudes were significantly increased as shown in Fig. 

17 hinting that any further increase in the rotation speed might 

lead to yielding of the drillstring. Fig. 18 also illustrates that the 

maximum lateral amplitude occurs in the middle of the 

drillstring. 

 

Lateral vibration in a drillstring often results from eccentricity 

which leads to centripetal forces at particular rotational speeds. 

This phenomenon is known as “whirl”. In real-world 

applications, the initial eccentricity of the drillstring is due to 

gravity or weight on bit (high compressive loads) as well as the 

presence of imbalance lumped mass which is attached to the 

drillstring as shown in Fig. 18. When external excitations 

(rotating the drillstring) take place close to lateral natural 

frequencies, the amplitude of lateral vibration remarkably 

increases and hence the drillstring strikes wellbore wall and 

creates considerable shocks.    

 
 

Fig. 18. Large lateral amplitude for 1" drill string near its 

rotational critical speed. 

Comparison between numerical and experimental results 

Comparison between the numerical results from the established 

model and the experimental results is performed by introducing 

the frequency ratio (𝜂) such as 

 𝜂 =
𝛽̇

𝑤𝑏
   

 

This has allowed plotting numerical maximum deflection of 

various pipe’s diameters with respect to the frequency ratio as 

shown in Fig. 19. It can be observed that the maximum 

deflection continuously increases with respect to the frequency 

ratio and reaches its critical value at 𝜂 = 1 “i.e. 𝛽̇ = 𝑤𝑏” which 

indicates that the total angular speed of the rotor = bending 

natural frequency of the system. Once the frequency ratio 

increased beyond the bending natural frequency of the system, 

the maximum deflections start to decrease. It can be noticed 

that the maximum deflections are  function of the geometrical 

parameters of the test specimen as deflections decreases 

significantly for pipes with larger diameters and thickness. The 

maximum deflections for three pipes rotating at 𝜂 = 0.9 

(corresponds to 90% of the pipe’s critical speed) are measured 

and compared to the calculated results from the numerical 

model. The results are presented in Table 3. The results in Fig. 

19 and table 3 shows that the numerical model is able to 

accurately reproduce the experimental results.  

 

 
Fig. 19. Numerical maximum deflection with respect to the 

frequency ratio. 

 

Table 3: Comparison  between numerical and experimental 

deflections. 
Drillstring 

size (outer 

diameter) 

Drillstring 

inner 

diameter 

(mm) 

Eccentric 

mass (kg) 

Maximum 

deflection  

(numerical)  

at  =0.9. 

Fig. 19. 

Maximum 

deflection 

(experiment)  

at  =0.9. 

Measured 

Percent 

error 

3” 

(76.2mm) 

68.2 2.5 73 mm 77 mm 5.1% 

2” 

(50.8mm) 

44.8 2.5 39 mm 41 mm 4.9% 

1” 

(25.4mm) 

21.4 2.5 28 mm 29 mm 3.5% 

  

Critical speed and critical frequency calculations 

The theoretical critical speed for the 3”, 2” and 1” drillstring are 

calculated and presented in Table 4. Equation (16) is modified 

and used to calculate the critical frequency and critical speed as 

follows: 
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𝑤𝑏(Hz) = √
𝐾𝑏

𝑚
= √

192 𝐸𝐼

𝑚𝐿3   

 

Critical speed (rpm) = 𝑤𝑏 x 60 

 

Table 4: Theoretical critical frequency and critical rotational 

speeds of the drillstrings 

 

Drillstring size 3"  2" 1" 

Critical frequency 

(Hz) 
25.3 18.15 11.0 

Critical speed 

(rpm) 
1518 1089 660 

 

As an example, the critical frequency and critical speed for the 

3” pipe shown in table 4 is calculated using the following 

parameters: do= 76.2 mm, di= 66.22, t = 5mm, E= 200,000 

N/mm2, L= 4000 mm, m = 10.67 Kg,  𝐼 =
𝜋

4
(𝑑𝑜

4 − 𝑑𝑖
4). 

 

Fatigue failure characterization  

The second set of tests was performed to investigate the fatigue 

failure due to inducing lateral vibration in the drill strings. Drill 

strings of three sizes (1", 2" and 3") were rotated at various 

rotational speeds and numbers of cycles to fatigue failure were 

observed (propagation of cracks corresponding to stage 3). For 

each diameter of the drill strings a number of samples was 

utilized. Fig. 20 shows the number of cycles to fatigue failure of 

different sizes of drillstrings at various rotational speeds. As 

shown in Fig. 20, number of cycles to failure has decreased as 

the rotational speed has increased which indicates that rotation 

speed and drill string sizes are the most significant factors in 

determining the number of cycles to fatigue failure. Fig. 18 also 

shows that with a rotational speed of about 10% less than the 

critical rotational speed (for all drill strings), the numbers of 

cycles to failure is significantly reduced.  This is due to the high 

lateral amplitude that is induced in each drillstring as the rotation 

speed of increased to about 90% of the drill string critical 

rotation speeds. Fig. 21 shows a yielded 1" drillstring after it has 

been rotated for a few hundreds of cycles. A test was conducted 

at 94% of the drill string critical speed (620 rpm) and resulted in 

a deflection (lateral amplitude) of about 11.5 cm. This process 

would lead to a better understanding of drillstring behavior under 

such loading condition and hence increase safety measures and 

reduce uncertainty for oil and gas drilling industry.  

 

For a deeper understanding of the impact of lateral amplitude on 

the fatigue life of a drill string, an experiment was conducted 

using a 2" drill string and rotated until constant lateral amplitude 

was reached and the number of cycles to failure was counted. 

Utilizing the same diameter of drill string, a similar experiment 

was performed at higher rotational speed and lateral amplitude 

and the number of cycles to failure were observed. The tests were 

repeated at higher rotation speeds and lateral amplitudes. Results 

presented in Fig. 22 show that the number of cycles to fatigue is 

increased as the lateral amplitude is reduced. It can be seen from 

Fig. 22 that when lateral amplitude plotted versus number of 

stress cycles, the behavior is similar to the familiar fatigue S-N 

curve for mild steel. In this case, the lateral amplitude represents 

the fatigue strength versus number of cycles to fatigue failure.  

 

Fig. 23 shows fatigue failure of 1" drill string at around 553110 

cycles due to rotating it at 600 rpm (10% lower than the pipe 

critical speed 660 rpm) and attached eccentric mass of 0.9kg. As 

it can be seen from Fig. 23 is about 8 cm away from the 

unbalanced mass.  

 

 
 

Fig. 20. Drillstrings rotational speeds versus number of cycles 

to fatigue failure. 

 

Fig. 21. Yielding of 1" drillstring due to operating at 94% critical 

speed 

 

Fig. 22. Lateral amplitude Vs number of stress cycles of 2" 

drillstring 
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Fig. 23. Fatigue failure of 1" drill string 

 

In another experiment and as it was explained in the testing 

procedure, the torsional vibration is induced in the drill string by 

applying a constant reversed torque utilizing the braking 

mechanism in the drill string at multiple number of brakes for a 

fixed duration (i.e. 5 sec.). Fig. 24 shows number of cycles versus 

number of braking per minute to fatigue failure at various 

rotational speeds for 2" diameter drill string. The figure 

illustrates that when number of braking was higher (i.e., 3 brakes 

per minute), number of cycles to fatigue failure less for all 

rotational speeds. However, when number of braking was low 

(i.e. 1 braking per min), number of cycles to fatigue failure was 

at highest for all rotational speeds. This indicate that frequent 

stick-slip occurrence leads to earlier fatigue failure of  drill string 

unless the system’s critical operating speeds and design 

parameters are determined and implemented for a safe drilling. 

 

 
 

Fig. 24. No. of cycles to fatigue failure at constant torque and 

duration for multiple braking at various RPM 

Conclusions 

This work aimed at gaining a deeper understanding of the 

complex behavior of drill string under vibrations and its 

detrimental effect on drilling operation. The developed model 

imitates real drillstring behavior inside the wellbore with regards 

to its dynamic movements based on modeling an in-house 

constructed testing rig which mimic the real drilling field 

operations. Lagrangian approach is used to obtain the drillstring 

lateral and torsional vibration coupling equations of motion. A 

mathematical model is developed to simulate the dynamic 

behavior of the drillstring. The effects of lateral and torsional 

vibrations and whirling motion of the drillstring are included in 

the model. An experimental setup was developed to imitate the 

vibration modes induced in the drillstring when it runs downhole 

in oil or gas wells. The testing facility is capable of investigating 

effects of individual and coupled modes on vibration on drill 

string failure. The performance of the setup was validated. A 

relationship between the rotation speed and drillstring vibration 

lateral and torsional amplitudes were established for various 

drillstring sizes. Fatigue failure tests were performed and showed 

that the drill string size, rotation speed, laterals and torsional 

vibration amplitudes have significant effects on fatigue life of 

the drillstring. Results showed that operating on a rotation speed 

higher than 90% of the drillstring critical speed leads to yielding 

of the drill string. Results also showed that the lateral amplitude 

versus number of stress cycles behavior is similar to the familiar 

fatigue S-N curve. Torsional vibration is induced in the drill 

string by applying a constant reversed torque utilizing the 

braking mechanism in the drill string at multiple numbers of 

brakes. Results showed that multiple numbers of braking, which 

represent frequent stick-slip, leads to fatigue failure unless the 

system’s critical operating speeds and design parameters are 

determined and implemented for a safe drilling. The developed 

model predicted that the vibrations induced in the drill string due 

to the interaction with the wellbore are the main reason for drill 

string failure. Unlike previous work, this model established a 

method for determining the critical operating speeds and design 

parameters for a safe drilling. It also provided a basis for 

developing a fatigue failure model that can predict the safe 

operating life of drill string.  
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